摘要:
A method of roughening a substrate surface includes forming an opening in a protection film formed on a surface of a semiconductor substrate, performing a first etching process using an acid solution by utilizing the protection film as a mask so as to form a first concave under the opening and its vicinity area, performing an etching process by using the protection film as a mask so as to remove an oxide film formed on a surface of the first concave, performing anisotropic etching by using the protection film as a mask so as to form a second concave under the opening and its vicinity area, and removing the protection film.
摘要:
A method of roughening a substrate surface includes forming an opening in a protection film formed on a surface of a semiconductor substrate, performing a first etching process using an acid solution by utilizing the protection film as a mask so as to form a first concave under the opening and its vicinity area, performing an etching process by using the protection film as a mask so as to remove an oxide film formed on a surface of the first concave, performing anisotropic etching by using the protection film as a mask so as to form a second concave under the opening and its vicinity area, and removing the protection film.
摘要:
To include a first step of forming a protection film on a surface of a translucent substrate, a second step of exposing the surface of the translucent substrate by forming a plurality of openings arranged regularly at a certain pitch in the protection film, a third step of forming parabolic irregularities including substantially hemispherical depressions arranged substantially uniformly on the surface of the translucent substrate by performing isotropic etching by using the protection film having the openings formed as a mask and under conditions in which the protection film has resistance to the surface of the translucent substrate on which the protection film is formed, and a fourth step of removing the protection film, wherein at the fourth step, the isotropic etching is continued after formation of the parabolic irregularities to separate the protection film from the translucent substrate and round apexes of protruded portions in the parabolic irregularities.
摘要:
Provided is a method for manufacturing a photovoltaic device which is capable of easily forming a texture having an aspect ratio larger than 0.5. The method for manufacturing a photovoltaic device include the steps of: forming an etching-resistant film on a silicon substrate; forming a plurality of fine holes in the etching-resistant film with an irradiated laser beam which has a focal depth adjusted to 10 μm or more to expose a surface of the silicon substrate which is a base layer; and etching the exposed surface of the silicon substrate, in which the step of exposing the surface of the silicon substrate includes forming a fine recess at a concentric position to each of the fine holes in the surface of the silicon substrate which lies under the etching-resistant film.
摘要:
Provided is a method for manufacturing a photovoltaic device which is capable of easily forming a texture having an aspect ratio larger than 0.5. The method for manufacturing a photovoltaic device include the steps of: forming an etching-resistant film on a silicon substrate; forming a plurality of fine holes in the etching-resistant film with an irradiated laser beam which has a focal depth adjusted to 10 μm or more to expose a surface of the silicon substrate which is a base layer; and etching the exposed surface of the silicon substrate, in which the step of exposing the surface of the silicon substrate includes forming a fine recess at a concentric position to each of the fine holes in the surface of the silicon substrate which lies under the etching-resistant film.
摘要:
The manufacturing method includes: forming a P-type silicon substrate and a high-concentration N-type diffusion layer, in which an N-type impurity is diffused in a first concentration, on an entire surface at a light-incident surface side; forming an etching resistance film on the high-concentration N-type diffusion layer and forming fine pores at a predetermined position within a recess forming regions on the etching resistance film; forming recesses by etching the silicon substrate around a forming position of the fine pores, so as not to leave the high-concentration N-type diffusion layer within the recess forming region; forming the low-concentration N-type diffusion layer, in which an N-type impurity is diffused in a second concentration that is lower than the first concentration, on a surface on which the recesses are formed; and forming a grid electrode in an electrode forming region at a light-incident surface side of the silicon substrate.
摘要:
A cold cathode display device which has a small thickness and a large display area, in which an anode can be sufficiently distant from an extraction electrode to ensure a breakdown voltage and an electron beam diameter can be made sufficiently smaller than the size of a phosphor, and a method of manufacturing such a cold cathode display device. A focus electrode is added to a conventional cold cathode display device. The focus electrode is located such that extraction electrodes and cathodes are interposed between the focus electrode and a back substrate. The focus electrode includes electron passage windows located opposite the cathodes and electron passage windows. The focus electrode is attached to, and supported by, the extraction electrodes via an insulating material with a distance being maintained between the focus and extraction electrodes.
摘要:
A heat treatment method of the present invention includes mounting a plurality of semiconductor wafers upright on a treatment boat in parallel to each other, inserting the treatment boat in a space above an injector located in a tube to be oriented to plane surfaces of the semiconductor wafers in parallel to an extending direction of the tube, and heating the tube while continuously supplying source gas into the tube through openings of the injector.
摘要:
A hybrid driving force transmission device includes a motor generator (9), a multi-plate dry clutch (7), a housing cover (60), a dust seal member (62), and a dust collection structure (63). The multi-plate dry clutch (7) is disposed at a position inner than the motor generator (9). The housing cover (60) is provided to cover the motor generator (9) and the multi-plate dry clutch (7), and divides the internal space into a clutch chamber (64) and a motor chamber (65). The dust seal member (62) is disposed at a position radially outside of a clutch chamber open surface (66) and seals between a rotor (92) and an inner wall (60a) of the housing cover (60). The dust collection structure (63) forms a dust collection space (69) in a region radially between the seal surface (68) formed by the dust seal member (62) and the clutch chamber open surface (66).
摘要:
A hybrid driving force transmission device includes a motor generator (9), a multi-plate dry clutch (7), a housing cover (60), a dust seal member (62), and a dust collection structure (63). The multi-plate dry clutch (7) is disposed at a position inner than the motor generator (9). The housing cover (60) is provided to cover the motor generator (9) and the multi-plate dry clutch (7), and divides the internal space into a clutch chamber (64) and a motor chamber (65). The dust seal member (62) is disposed at a position radially outside of a clutch chamber open surface (66) and seals between a rotor (92) and an inner wall (60a) of the housing cover (60). The dust collection structure (63) forms a dust collection space (69) in a region radially between the seal surface (68) formed by the dust seal member (62) and the clutch chamber open surface (66).