摘要:
A contact between a conductor and a substrate region in a MOSFET SRAM device is formed by a dielectric layer on the surface of a partially completed SRAM device with pass transistors and latch transistors with the dielectric layer being formed above those pass and latch transistors. A thin film transistor gate electrode and an interconnection line are formed on the upper surface of the dielectric layer. A gate oxide layer covers the gate electrode and the interconnection line. A polysilicon conductive layer which covers the gate oxide layer includes a channel region between a source region and a drain region which are formed on opposite sides of the channel region. There is a channel mask formed self-aligned with the channel region formed above the channel region as well as being above the gate electrode. The polysilicon conductive layer is doped aside from the channel mask thereby providing a source region and a drain region on opposite sides of the channel region. A doped interconnect line is also formed in the polysilicon conductive layer. There is a contact which extends through the gate oxide layer between the interconnection line and the polysilicon conductive layer.
摘要:
A method of forming a contact between a conductor and a substrate region in a MOSFET SRAM starts with forming a dielectric layer on the surface of a partially completed SRAM device with pass and latch transistors covering the transistors. Then, form a thin film gate electrode and an interconnect on the dielectric layer with a gate oxide layer covering the gate electrode and the interconnect; cover the gate oxide layer with a poly conductive layer. Then form a silicon oxide layer over the poly conductive layer and pattern the silicon oxide layer to form a silicon oxide channel mask over the poly conductive layer which is used to pattern the silicon oxide layer into a channel mask over the gate electrode. The channel mask is used for patterning the implanting of dopant into the poly conductive layer aside from the channel mask to form a source region, a drain region and an interconnect in the poly conductive layer. Then form a contact through the gate oxide layer between the interconnect and the poly conductive layer by forming a tungsten layer over the poly conductive layer aside from the channel mask which remains in place.
摘要:
A new method of forming an improved buried contact junction is described. A gate silicon oxide layer is provided over the surface of a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. A hard mask layer is deposited overlying the polysilicon layer. The hard mask and polysilicon layers are etched away where they are not covered by a mask to form a polysilicon gate electrode and interconnection lines having a silicon nitride layer thereover wherein gaps are left between the gate electrode and interconnection lines. A layer of dielectric material is deposited over the substrate to fill the gaps. The had mask layer is removed. Thereafter, the polysilicon layer is etched away where it is not covered by a buried contact mask to form an opening to the semiconductor substrate. Ions are implanted into the semiconductor substrate within the opening to form the buried contact. A tungsten layer is selectively deposited overlying the buried contact and the polysilicon gate electrode and interconnection lines to form polycide gate electrodes and interconnection lines. The dielectric material layer is anisotropically etched to leave spacers on the sidewalls of the polycide gate electrodes and interconnection lines to complete the formation of a buried contact junction in the fabrication of an integrated circuit.
摘要:
A method of forming a contact in a thin film transistor with a gate electrode and an interconnect formed on a substrate, in an SRAM device comprises the following steps. Form a gate oxide layer over device. Form a split amorphous silicon layer over gate oxide layer. Form a cap layer over split amorphous silicon layer. Form a contact opening down to interconnect. Form contact metallization in opening on the surface of interconnect either as a blanket titanium layer followed by rapid thermal anneal to form a silicide and stripping unreacted titanium or by selective formation of a tungsten metal silicide in the opening. Strip cap layer from device. Form a second amorphous silicon layer on split silicon layer. Recrystallize silicon layers to form a polysilicon channel layer from amorphous silicon layers. Dope regions of polysilicon channel layer aside from a channel region above gate electrode.
摘要:
A new method of forming an improved buried contact junction is described. A gate silicon oxide layer is provided over the surface of a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. A hard mask layer is deposited overlying the polysilicon layer. The hard mask and polysilicon layers are etched away where they are not covered by a mask to form a polysilicon gate electrode and interconnection lines having a silicon nitride layer thereover wherein gaps are left between the gate electrode and interconnection lines. A layer of dielectric material is deposited over the substrate to fill the gaps. The had mask layer is removed. Thereafter, the polysilicon layer is etched away where it is not covered by a buried contact mask to form an opening to the semiconductor substrate. Ions are implanted into the semiconductor substrate within the opening to form the buried contact. A tungsten layer is selectively deposited overlying the buried contact and the polysilicon gate electrode and interconnection lines to form polycide gate electrodes and interconnection lines. The dielectric material layer is anisotropically etched to leave spacers on the sidewalls of the polycide gate electrodes and interconnection lines to complete the formation of a buried contact junction in the fabrication of an integrated circuit.
摘要:
A method of reducing impurities in a high-k dielectric layer comprising the following steps. A substrate is provided. A high-k dielectric layer having impurities is formed over the substrate. The high-k dielectric layer being formed by an MOCVD or an ALCVD process. The high-k dielectric layer is annealed to reduce the impurities within the high-k dielectric layer.
摘要:
A method of forming an integrated circuit structure includes providing a semiconductor substrate; forming patterned features over the semiconductor substrate, wherein gaps are formed between the patterned features; filling the gaps with a first filling material, wherein the first filling material has a first top surface higher than top surfaces of the patterned features; and performing a first planarization to lower the top surface of the first filling material, until the top surfaces of the patterned features are exposed. The method further includes depositing a second filling material, wherein the second filling material has a second top surface higher than the top surfaces of the patterned features; and performing a second planarization to lower the top surface of the second filling material, until the top surfaces of the patterned features are exposed.
摘要:
A semiconductor device having a core device with a high-k gate dielectric and an I/O device with a silicon dioxide or other non-high-k gate dielectric, and a method of fabricating such a device. A core well and an I/O well are created in a semiconductor substrate and separated by an isolation structure. An I/O device is formed over the I/O well and has a silicon dioxide or a low-k gate dielectric. A resistor may be formed on an isolation structure adjacent to the core well. A core-well device such as a transistor is formed over the core well, and has a high-k gate dielectric. In some embodiments, a p-type I/O well and an n-type I/O well are created. In a preferred embodiment, the I/O device or devices are formed prior to forming the core device and protected with a sacrificial layer until the core device is fabricated.
摘要:
A semiconductor device is provided that includes a semiconductor substrate having a first region and a second region, transistors having metal gates formed in the first region, an isolation structure formed in the second region, at least one junction device formed proximate the isolation structure in the second region, and a stopping structure formed overlying the isolation structure in the second region.
摘要:
A method of forming a semiconductor device includes providing a semiconductor substrate; forming a gate stack on the semiconductor substrate; forming a gate spacer adjacent to a sidewall of the gate stack; thinning the gate spacer; and forming a secondary gate spacer on a sidewall of the gate spacer after the step of thinning the gate spacer.