Abstract:
A flip-chip semiconductor package structure and a package substrate applicable thereto are disclosed. The package substrate includes a body having at least a chip-attach area disposed thereon; a plurality of solder pads disposed in the chip-attach area and arranged at different intervals; and a fluid-disturbing portion disposed in the chip-attach area at a position where the solder pads are loosely arranged. A flip-chip semiconductor chip is mounted on the solder pads via conductive bumps and an underfill material is filled between the package substrate and the flip-chip semiconductor chip, the underfill material encapsulating the conductive bumps and the fluid-disturbing portion. By protrudingly disposing the fluid-disturbing portion at a position where the conductive bumps are loosely arranged, that is, the conductive bumps having bigger intervals therebetween, gap between the package substrate and the flip-chip semiconductor chip can be reduced so as to increase capillary attraction generated by capillary phenomenon, thereby balancing flow rate of the underfill material between the conductive bumps that are arranged at different intervals and thus avoiding problems of void formation, subsequent popcorn effect or delamination as encountered in the prior art.
Abstract:
An electronic carrier board for a chip to be mounted thereon is provided, which includes a body and a plurality of solder pads. The solder pads have carrying surfaces for carrying the chip thereon through conductive bumps. The carrying surfaces of at least two solder pads are oppositely inclined with respect to each other, thereby preventing the conductive bumps mounted on the carrying surfaces from displacement and thereby further preventing two adjacent conductive bumps subject to displacement from coming into short-circuit contact.
Abstract:
An electronic carrier board for a chip to be mounted thereon is provided, which includes a body and a plurality of solder pads. The solder pads have carrying surfaces for carrying the chip thereon through conductive bumps. The carrying surfaces of at least two solder pads are oppositely inclined with respect to each other, thereby preventing the conductive bumps mounted on the carrying surfaces from displacement and thereby further preventing two adjacent conductive bumps subject to displacement from coming into short-circuit contact.
Abstract:
An integrated circuit device includes a fin at least partially embedded in a shallow trench isolation (STI) region and extending between a source and a drain. The fin is formed from a first semiconductor material and having a trimmed portion between first and second end portions. A cap layer, which is formed from a second semiconductor material, is disposed over the trimmed portion of the fin to form a high mobility channel. A gate electrode structure is formed over the high mobility channel and between the first and second end portions.
Abstract:
An integrated circuit device includes a fin at least partially embedded in a shallow trench isolation (STI) region and extending between a source and a drain. The fin is formed from a first semiconductor material and having a trimmed portion between first and second end portions. A cap layer, which is formed from a second semiconductor material, is disposed over the trimmed portion of the fin to form a high mobility channel. A gate electrode structure is formed over the high mobility channel and between the first and second end portions.
Abstract:
A semiconductor device having at least an electronic component and its fabrication method are disclosed. The fabrication method comprises: applying a conductive material on each one of at least a paired solder pads arranged on a substrate by screen printing, with a recess formed in the conductive material on each one of the at least a paired solder pads, so as to expose a portion of each one of the at least a paired solder pads, wherein the recesses on the at least a paired solder pads are formed in position corresponding to each other; and mounting at least an electronic component having two opposing conductive terminals on the at least a paired solder pads, in a manner that the two opposing conductive terminals are introduced into the corresponding recesses of the conductive material so as for the electronic component to be electrically connected to the at least a paired solder pads via the conductive material by reflow. The recesses of the conductive material are capable of effectively securing the electronic component in position. Furthermore, both terminals of the electronic component are not formed with conductive material underneath so as to prevent the electronic components from tilting in level resulted from the uniform applying of the conductive material.