摘要:
For fabricating multiple field effect transistors (FETs), a first conductive layer is deposited over first and second active regions of a semiconductor substrate. The first conductive layer is patterned over the second active region to form mold structures. Mask structures are formed between the mold structures. The second active region is patterned using the mask structures or using spacers formed at sidewalls of the mold structures to form multiple fins of a field effect transistor of a fin type. The first conductive layer is patterned over the first active region to form a gate of another field effect transistor of a different type.
摘要:
For fabricating multiple field effect transistors (FETs), a first conductive layer is deposited over first and second active regions of a semiconductor substrate. The first conductive layer is patterned over the second active region to form mold structures. Mask structures are formed between the mold structures. The second active region is patterned using the mask structures or using spacers formed at sidewalls of the mold structures to form multiple fins of a field effect transistor of a fin type. The first conductive layer is patterned over the first active region to form a gate of another field effect transistor of a different type.
摘要:
A semiconductor device including an active pattern having a channel recess portion, and a method of fabricating the same, are disclosed. In one embodiment, the semiconductor device includes an active pattern including first active regions and a second active region interposed between the first active regions. The active pattern protrudes above a surface of a semiconductor substrate and includes a channel recess portion above the second active region and between the first active regions. A device isolation layer surrounds the active pattern and has a groove exposing side walls of the recessed second active region. A distance between opposing side walls of the first active regions exposed by the channel recess portion is greater than a distance between side walls of the groove. A gate pattern is located in the channel recess portion and extends along the groove.
摘要:
A method of fabricating a semiconductor device for reducing a thermal burden on impurity regions of a peripheral circuit region includes preparing a substrate including a cell active region in a cell array region and peripheral active regions in a peripheral circuit region. A cell gate pattern and peripheral gate patterns may be formed on the cell active region and the peripheral active regions. First cell impurity regions may be formed in the cell active region. A first insulating layer and a sacrificial insulating layer may be formed to surround the cell gate pattern and the peripheral gate patterns. Cell conductive pads may be formed in the first insulating layer to electrically connect the first cell impurity regions. The sacrificial insulating layer may be removed adjacent to the peripheral gate patterns. First and second peripheral impurity regions may be sequentially formed in the peripheral active regions adjacent to the peripheral gate patterns.
摘要:
A method of fabricating a semiconductor device for reducing a thermal burden on impurity regions of a peripheral circuit region includes preparing a substrate including a cell active region in a cell array region and peripheral active regions in a peripheral circuit region. A cell gate pattern and peripheral gate patterns may be formed on the cell active region and the peripheral active regions. First cell impurity regions may be formed in the cell active region. A first insulating layer and a sacrificial insulating layer may be formed to surround the cell gate pattern and the peripheral gate patterns. Cell conductive pads may be formed in the first insulating layer to electrically connect the first cell impurity regions. The sacrificial insulating layer may be removed adjacent to the peripheral gate patterns. First and second peripheral impurity regions may be sequentially formed in the peripheral active regions adjacent to the peripheral gate patterns.
摘要:
A recessed transistor and a method of manufacturing the same are provided. The recessed transistor may include a substrate, an active pin, a gate pattern and source and drain regions. The substrate may include an isolation layer that establishes an active region and a field region of the substrate. The substrate may include a recessed structure having an upper recess formed in the active region and a lower recess in communication with the upper recess. An active pin may be formed in a region between side surfaces of the isolation layer and the lower recess and an interface between the active region and the field region. The gate pattern may include a gate insulation layer formed on an inner surface of the recessed structure and a gate electrode formed on the gate insulation layer in the recessed structure. The source/drain regions may be formed adjacent to the active region and the gate electrode.
摘要:
A recessed transistor and a method of manufacturing the same are provided. The recessed transistor may include a substrate, an active pin, a gate pattern and source and drain regions. The substrate may include an isolation layer that establishes an active region and a field region of the substrate. The substrate may include a recessed structure having an upper recess formed in the active region and a lower recess in communication with the upper recess. An active pin may be formed in a region between side surfaces of the isolation layer and the lower recess and an interface between the active region and the field region. The gate pattern may include a gate insulation layer formed on an inner surface of the recessed structure and a gate electrode formed on the gate insulation layer in the recessed structure. The source/drain regions may be formed adjacent to the active region and the gate electrode.
摘要:
An isolation method of defining active fins, a method of fabricating a semiconductor device using the same, and a semiconductor device fabricated thereby are provided. The method of fabricating a semiconductor device includes: preparing a semiconductor substrate; and forming a plurality of active fins having major and minor axes and two-dimensionally arrayed on the semiconductor substrate in directions of the major and minor axes. A liner pattern is formed on lower sidewalls of the active fins. An isolation layer is formed on the semiconductor substrate having the liner pattern, and the isolation layer exposes top surfaces of the active fins and a part of the active fins' sidewalls substantially parallel to the major axis. Parallel gate lines are formed to cover the top surfaces and the exposed sidewalls of the active fins, cross over the active fins, and run on the isolation layer.
摘要:
A vertical type integrated circuit device includes a substrate and a pillar vertically protruding from the substrate. The pillar includes a lower impurity region and an upper impurity region therein and a vertical channel region therebetween. A portion of the pillar including the lower impurity region therein includes a mesa laterally extending therefrom. The device further includes a first conductive line extending on a first sidewall of the pillar and electrically contacting the lower impurity region, and a second conductive line extending on a second sidewall of the pillar adjacent the vertical channel region. The second conductive line extends in a direction perpendicular to the first conductive line and is spaced apart from the mesa. Related devices and methods of fabrication are also discussed.
摘要:
A vertical type integrated circuit device includes a substrate and a pillar vertically protruding from the substrate. The pillar includes a lower impurity region and an upper impurity region therein and a vertical channel region therebetween. A portion of the pillar including the lower impurity region therein includes a mesa laterally extending therefrom. The device further includes a first conductive line extending on a first sidewall of the pillar and electrically contacting the lower impurity region, and a second conductive line extending on a second sidewall of the pillar adjacent the vertical channel region. The second conductive line extends in a direction perpendicular to the first conductive line and is spaced apart from the mesa. Related devices and methods of fabrication are also discussed.