摘要:
Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Alx1Iny1Ga(1-x1-y1)N (where 0≦x1≦1, 0≦y1≦1, and 0≦x1+y1≦1), a multiple quantum well-structured active layer made of undoped InAGa1-AN (where 0
摘要翻译:本文公开了一种氮化物基半导体发光器件。 氮化物系半导体发光元件包括由n型Al x In 1 Ga 1(1-x1-y1)N(其中0≦̸ x1≦̸ 1,0& nlE; y1≦̸ 1和0≦̸ x1 + y1&nlE ; 1),由n型覆盖层上形成的未掺杂的InAGa1-AN(其中0
摘要:
The present invention relates to a fabrication method of nitride-based semiconductors and a nitride-based semiconductor fabricated thereby. In the fabrication method of the invention, a self-organizing metal layer is formed on a sapphire substrate. The sapphire substrate having the self-organizing metal layer is heated so that self-organizing metal coalesces into nanoscale clusters to irregularly expose an upper surface of the sapphire substrate. Exposed portions of the sapphire substrate is plasma etched using the self-organized metal clusters as a mask to form a nanoscale uneven structure on the sapphire substrate. A resultant structure is wet etched to remove the self-organized metal clusters. The nanoscale uneven structure formed on the sapphire substrate decreases the stress and resultant dislocation between the sapphire substrate and a nitride-based semiconductor layer as well as increases the quantum efficiency between the same.
摘要:
The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
摘要:
The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
摘要:
The present invention provides a semiconductor light-emitting device. The light-emitting device comprises a first conductive clad layer, an active layer, and a second conductive clad layer sequentially formed on a substrate. In the light-emitting device, the substrate has one or more side patterns formed on an upper surface thereof while being joined to one or more edges of the upper surface. The side patterns consist of protrusions or depressions so as to scatter or diffract light to an upper portion or a lower portion of the light-emitting device.
摘要:
Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Alx1Iny1Ga(1-x1-y1)N (where 0≦x1≦1, 0≦y1≦1, and 0≦x1+y1≦1), a multiple quantum well-structured active layer made of undoped InAGa1-AN (where 0
摘要翻译:本文公开了一种氮化物基半导体发光器件。 氮化物系半导体发光元件包括由n型Al x In 1 Ga 1(1-x1-y1)N(其中0≦̸ x1≦̸ 1,0& nlE; y1≦̸ 1和0≦̸ x1 + y1&nlE ; 1),由n型覆盖层上形成的未掺杂的InAGa1-AN(其中0
摘要:
Disclosed herein is a nitride-based semiconductor light-emitting device. The nitride-based semiconductor light-emitting device comprises an n-type clad layer made of n-type Alx1Iny1Ga(1-x1-y1)N (where 0≦x1≦1, 0≦y1≦1, and 0≦x1+y1≦1), a multiple quantum well-structured active layer made of undoped InAGa1-AN (where 0
摘要翻译:本文公开了一种氮化物基半导体发光器件。 氮化物系半导体发光元件包括由n型Al x In 1 Ga 1(1-x1-y1)N(其中0≦̸ x1≦̸ 1,0& nlE; y1≦̸ 1和0≦̸ x1 + y1&nlE ; 1),由n型覆盖层上形成的未掺杂的InAGa1-AN(其中0
摘要:
The present invention provides a nitride based semiconductor device comprising an active layer having a quantum well layer and a quantum barrier layer, wherein the device includes an electron emitting layer formed of at least two repeats of a first nitride semiconductor layer and a second nitride semiconductor layer having different compositions between a n-type nitride semiconductor layer and the active layer, the first nitride semiconductor layer has an energy band gap greater than that of the quantum well layer, smaller than that of the quantum barrier layer, and decreasing closer to the active layer, and the second nitride semiconductor layer has an energy band gap at least higher than that of the adjacent first nitride semiconductor layer(s) and has a thickness capable of tunneling electrons.
摘要:
A nitride semiconductor light emitting device including a light emitting diode and a diode formed on a single substrate, in which the light emitting diode and the diode use a common electrode. According to the present invention, an active layer and a p-type nitride semiconductor layer are each divided into a first region and a second region by an insulative isolation layer, and an ohmic contact layer is formed on the p-type nitride semiconductor layer contained in the first region. A p-type electrode is formed on the ohmic contact layer and is extended to the p-type nitride semiconductor layer contained in the second region. An n-type electrode is formed on the p-type nitride semiconductor layer contained in the second region, passes through the p-type nitride semiconductor layer and the active layer contained in the second region, and is connected to the first n-type nitride semiconductor layer.
摘要:
A method of forming a nitride semiconductor device is disclosed. An n-type GaN layer is formed on a substrate. A self assembled nitride semiconductor quantum dot layer is formed on the n-type GaN layer by growing InyGa(1-y)N (0.3≦y≦1) directly on the n-type GaN layer. A resonance tunnel layer is formed on the n-type GaN layer to cover the nitride semiconductor quantum dot layer. An active layer is formed on the resonance tunnel layer. A p-type nitride semiconductor layer is formed on the active layer. The active layer contains a quantum well layer and a quantum barrier layer, and the resonance tunnel layer has a band gap energy greater than that of the quantum well layer.