Abstract:
Disclosed in an embodiment are a semiconductor device and a semiconductor device package including the same, the semiconductor device comprising: a semiconductor structure including a first light emitting unit and a second light emitting unit; a first electrode for electrically connecting a first conductive type semiconductor layer of the first light emitting unit with a first conductive type semiconductor layer of the second light emitting unit; and a second electrode for electrically connecting a second conductive type semiconductor layer of the first light emitting unit with a second conductive type semiconductor layer of the second light emitting unit, wherein: the first electrode includes a first pad arranged on the first light emitting unit, a first branch electrode arranged on the first light emitting unit, and a first extension electrode arranged on the second light emitting unit; the second electrode includes a second pad arranged on the second light emitting unit, a second branch electrode arranged on the second light emitting unit, and a second extension electrode arranged on the first light emitting unit; the semiconductor structure includes a first spacing section which extends in a first direction and comparts the first light emitting unit and the second light emitting unit; and the first pad and the second pad are not overlapped in the first direction and a second direction which is perpendicular to the first direction.
Abstract:
The light emitting device package disclosed in the embodiment includes first and second frames spaced apart from each other; a body disposed between the first and second frames; a light emitting device disposed on the first and second frames; a first resin disposed between the body and the light emitting device, wherein each of the first and second frames includes a through hole, the through hole overlaps the light emitting device in a vertical direction, and the body includes a recess recessed toward a lower surface of the body between the first and second frames, and the recess overlaps the light emitting device in the vertical direction, the first resin is disposed in the recess, and a length of the recess is smaller than a width of the light emitting device.
Abstract:
A light emitting device including a contact layer, a blocking layer over the contact layer, a protection layer adjacent the blocking layer, a light emitter over the blocking layer, and an electrode layer coupled to the light emitter. The electrode layer overlaps the blocking layer and protection layer, and the blocking layer has an electrical conductivity that substantially blocks flow of current from the light emitter in a direction towards the contact layer. In addition, the protection layer may be conductive to allow current to flow to the light emitter or non-conductive to block current from flowing from the light emitter towards the contact layer.
Abstract:
A semiconductor light-emitting device is provided. The semiconductor light-emitting device may include a light-emitting structure, an electrode, an ohmic layer, an electrode layer, an adhesion layer, and a channel layer. The light-emitting structure include a compound semiconductor layer. The electrode may be disposed on the light-emitting structure. The ohmic layer may be disposed under the light-emitting structure. The electrode layer may include a reflective metal under the ohmic layer. The adhesion layer may be disposed under the electrode layer. The channel layer may be disposed along a bottom edge of the light-emitting structure.
Abstract:
A light emitting device including a contact layer, a blocking layer over the contact layer, a protection layer adjacent the blocking layer, a light emitter over the blocking layer, and an electrode layer coupled to the light emitter. The electrode layer overlaps the blocking layer and protection layer, and the blocking layer has an electrical conductivity that substantially blocks flow of current from the light emitter in a direction towards the contact layer. In addition, the protection layer may be conductive to allow current to flow to the light emitter or non-conductive to block current from flowing from the light emitter towards the contact layer.
Abstract:
Provided are a light emitting device, an electrode structure, a light emitting device package, and a lighting system. The light emitting device includes a light emitting structure layer comprising a first semiconductor layer, a second semiconductor layer, and an active layer. An electrode disposed on a top surface of the first semiconductor layer, a first layer includes a transmittive oxide material between the top surface of the first semiconductor layer and the electrode, and a second layer disposed is disposed between the first layer and the electrode, wherein the first layer is formed in a different material from the second layer, wherein the electrode comprises a lower portion connected to the first semiconductor layer and an upper portion on a top surface of the second layer.
Abstract:
A light emitting device including a substrate, a first conductive layer on the substrate, a second conductive layer on the first conductive layer, a metal layer on the second conductive layer, a light emitting structure on the metal layer and the second conductive layer, the light emitting structure including a first semiconductor layer containing AlGaN, an active layer, and a second semiconductor layer containing AlGaN, a first electrode on the light emitting structure, and a passivation layer disposed on a side surface of the light emitting structure. Further, the metal layer directly contacts with the light emitting structure, the second conductive layer directly contacts with the light emitting structure, a portion of the passivation layer is disposed on a top surface of the light emitting structure, a width of the second conductive layer greater than a width of the metal layer, and a distance between a top surface of the substrate and a bottom surface of the metal layer at a center portion of the metal layer is different from a distance between the top surface of the substrate and the bottom surface of the metal layer at a side portion of the metal layer.
Abstract:
A light emitting device including a support substrate, an adhesive layer on the support substrate, a conductive layer on the adhesive layer, a light emitting structure on the conductive layer, the light emitting structure including a first semiconductor layer containing AlGaN, an active layer, and a second semiconductor layer containing AlGaN, a first electrode on the light emitting structure, a metal layer disposed under the conductive layer and at an adjacent region of the conductive layer, and a passivation layer disposed on a side surface of the light emitting structure, wherein the first electrode is vertically non-overlapped with the conductive layer, wherein the conductive layer includes a first layer and a second layer on the first layer, wherein the second layer directly contacts with the light emitting structure, wherein the metal layer directly contacts with the light emitting structure, wherein the metal layer is expanded to an outer area of the light emitting structure, and wherein the passivation layer is disposed on the metal layer at the outer surface of the light emitting structure.
Abstract:
Disclosed are a light emitting device and a light emitting device package. The light emitting device includes a light emitting structure including a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, and a second conductive semiconductor layer on the active layer, an adhesive layer contacting a top surface of the first conductive semiconductor layer, a first electrode contacting a top surface of the first conductive semiconductor and a top surface of the adhesive layer, and a second electrode contacting the second conductive semiconductor layer, wherein the adhesive layer contacting the first electrode is spaced apart from the second electrode.
Abstract:
A light emitting device includes a conductive support layer, a light emitting structure layer on the conductive support layer, a first transparent conductive layer and a second transparent conductive layer disposed between the conductive support layer and the light emitting structure layer, and an electrode on the light emitting structure layer.