Abstract:
A method of loading beads on a sensor substrate includes applying a suspension including beads to a flow cell defined over a sensor substrate. The sensor substrate includes a plurality of wells. The beads at least partially deposit into the plurality of wells. The method also includes removing liquid from the flow cell, evaporating liquid from the flow cell, for example, by drawing air through the flow cell; and applying a hydrating solution to the flow cell.
Abstract:
A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
Abstract:
A method of preparing hydrogel particles includes applying a solution including a plurality of hydrogel particles to a stir cell. A retentate side of a filter defines a lower surface of the stir cell. The filter has the retentate side and a permeate side. The method further includes, while stirring the solution within the stir cell, dispensing a buffer solution at a first flow rate to the stir cell and drawing a permeate from the permeate side of the filter using a pump at a second flow rate, the permeate including a subset of the plurality of hydrogel particles.
Abstract:
The disclosure relates to methods of making polymer particles, said methods including the steps of: making an aqueous gel reaction mixture; forming an emulsion having dispersed aqueous phase micelles of gel reaction mixture in a continuous phase; adding an initiator oil comprising at least one polymerization initiator to the continuous phase; and performing a polymerization reaction in the micelles. Further, the initiator oil is present in a volume % relative to a volume of the aqueous gel reaction mixture of between about 1 vol % to about 20 vol %. The disclosure also relates to methods of making nucleic acid polymer particles having the same method steps and wherein the aqueous gel reaction mixture includes a nucleic acid fragment, such as a primer.
Abstract:
A method of sequencing a nucleic acid strand includes receiving particles having nucleic acid strands coupled to a polymer matrix, exposing the particles to a solution including a condensing agent, and applying the particles to a surface, the particles depositing on the surface.
Abstract:
The disclosure relates to methods of making polymer particles, said methods including the steps of: making an aqueous gel reaction mixture; forming an emulsion having dispersed aqueous phase micelles of gel reaction mixture in a continuous phase; adding an initiator oil comprising at least one polymerization initiator to the continuous phase; and performing a polymerization reaction in the micelles. Further, the initiator oil is present in a volume % relative to a volume of the aqueous gel reaction mixture of between about 1 vol % to about 20 vol %. The disclosure also relates to methods of making nucleic acid polymer particles having the same method steps and wherein the aqueous gel reaction mixture includes a nucleic acid fragment, such as a primer.
Abstract:
The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
Abstract:
A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.
Abstract:
The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
Abstract:
A method of forming a polymer matrix array includes applying an aqueous solution into wells of a well array. The aqueous solution includes polymer precursors. The method further includes applying an immiscible fluid over the well array to isolate the aqueous solution within the wells of the well array and polymerizing the polymer precursors isolated in the wells of the well array to form the polymer matrix array. An apparatus includes a sensor array, a well array corresponding to the sensor array, and an array of polymer matrices disposed in the well array.