-
公开(公告)号:US20210404819A1
公开(公告)日:2021-12-30
申请号:US16910109
申请日:2020-06-24
Applicant: Lyft, Inc.
Inventor: Michael Kay-Uei Chang , Janie Jia Gu , Mayank Gulati , Demitri Nava , Guy-Baptiste Richard de Capele d'Hautpoul , Maksim Rozentsveyg , Christopher John Selin , David Ikuye , Daniel Yu
IPC: G01C21/34 , G06F16/29 , G06F16/901 , G06Q50/30 , G01C21/36
Abstract: The disclosed computer-implemented method may include (i) receiving, by a dynamic transportation matching system, a request for transportation between initial waypoints, (ii) calculating, by the dynamic transportation matching system, a value metric for an initial driving route between the initial waypoints (iii) calculating a value metric for a walk-enabled driving route that comprises at least one alternate waypoint that is within a predetermined walking range of one of the initial waypoints, and (iv) improving, by the dynamic transportation matching system, a value of fulfilling the request for transportation by determining that a difference between the value metric of the walk-enabled driving route and the value metric of the initial driving route satisfies a walking-value threshold and selecting, based on the determination that the difference satisfies the walking-value threshold, the walk-enabled driving route for fulfilling the request for transportation. Various other methods, systems, and computer-readable media are also disclosed.
-
公开(公告)号:US10832294B1
公开(公告)日:2020-11-10
申请号:US16672260
申请日:2019-11-01
Applicant: Lyft, Inc.
Inventor: Helen Wai-Quen Bentley , Aidan Church , John Torres Fremlin , Matthew Lawrence Green , Mayank Gulati , Yilei Li , Demitri Nava , Mengqi Niu , Daniel Allen Sullivan , Garrett van Ryzin , Rachel Marie Wasko , Shashi Kant Sharma
Abstract: The disclosed systems can regulate access to an online mode for a dynamic transportation matching system. For example, based on a provider efficiency parameter associated with the dynamic transportation matching system, the disclosed systems can prevent a transportation provider device from switching to the online mode within a geographic area. In addition, the disclosed systems can detect a pattern of behavior and, based on a comparison between the pattern of behavior and a behavioral threshold, cause a transportation provider device to switch from the online mode to an offline mode. Further, the disclosed systems can provide a map interface that indicates where a transportation provider device can switch from the offline mode to the online mode. Additionally, the disclosed systems can determine priorities associated with transportation provider devices and, based on the prioritization, selectively allow the transportation provider devices to switch from the offline mode to the online mode.
-
3.
公开(公告)号:US20240339036A1
公开(公告)日:2024-10-10
申请号:US18740293
申请日:2024-06-11
Applicant: Lyft, Inc.
Inventor: Xabier Azagirre Lekuona , John Torres Fremlin , Sebastien Jean Francois Martin , Demitri Nava , Garrett John van Ryzin
CPC classification number: G08G1/202 , G01C21/3438 , G01C21/3605 , G08G1/207
Abstract: The present application discloses systems, methods, and computer-readable media that utilize computing devices to model multi-outcome transportation-value metrics that account for spatio-temporal trajectories across locations, times and other contextual features, and then utilize computer networks to dispatch provider devices to locations based on the multi-outcome transportation-value metrics. Moreover, the disclosed systems can utilize these multi-outcome transportation-value metrics and/or other models to manage and utilize dynamic transportation dispatch modes to more efficiently align provider devices and requestor devices across computer networks. For instance, the disclosed system can dispatch a provider device based on a discounted multi-outcome transportation-value metric. Furthermore, the disclosed system can dynamically determine prioritized dispatch mode provider device slots, fill provider device slots based on performance metrics, and then select provider device from between a prioritized transportation dispatch mode and another transportation dispatch mode based on prioritization metrics corresponding to a transportation request.
-
公开(公告)号:US12062289B2
公开(公告)日:2024-08-13
申请号:US16985656
申请日:2020-08-05
Applicant: Lyft, Inc.
Inventor: Xabier Azagirre Lekuona , John Torres Fremlin , Sebastien Jean Francois Martin , Demitri Nava , Garrett John van Ryzin
CPC classification number: G08G1/202 , G01C21/3438 , G01C21/3605 , G08G1/207
Abstract: The present application discloses systems, methods, and computer-readable media that utilize computing devices to model multi-outcome transportation-value metrics that account for spatio-temporal trajectories across locations, times and other contextual features, and then utilize computer networks to dispatch provider devices to locations based on the multi-outcome transportation-value metrics. Moreover, the disclosed systems can utilize these multi-outcome transportation-value metrics and/or other models to manage and utilize dynamic transportation dispatch modes to more efficiently align provider devices and requestor devices across computer networks. For instance, the disclosed system can dispatch a provider device based on a discounted multi-outcome transportation-value metric. Furthermore, the disclosed system can dynamically determine prioritized dispatch mode provider device slots, fill provider device slots based on performance metrics, and then select provider device from between a prioritized transportation dispatch mode and another transportation dispatch mode based on prioritization metrics corresponding to a transportation request.
-
公开(公告)号:US12217288B2
公开(公告)日:2025-02-04
申请号:US18193242
申请日:2023-03-30
Applicant: Lyft, Inc.
Inventor: Helen Wai-Quen Bentley , Aidan Church , John Torres Fremlin , Matthew Lawrence Green , Mayank Gulati , Yilei Li , Demitri Nava , Mengqi Niu , Daniel Allen Sullivan , Garrett van Ryzin , Rachel Marie Wasko , Shashi Kant Sharma
IPC: G06Q30/0283 , G01C21/34 , G01C21/36 , G06F9/4401 , G06F16/29 , G06Q10/02 , G06Q10/047 , G06Q10/063 , G06Q50/40 , G08G1/00 , H04W4/021
Abstract: The disclosed systems can regulate access to an online mode for a dynamic transportation matching system. For example, based on a provider efficiency parameter associated with the dynamic transportation matching system, the disclosed systems can prevent a transportation provider device from switching to the online mode within a geographic area. In addition, the disclosed systems can detect a pattern of behavior and, based on a comparison between the pattern of behavior and a behavioral threshold, cause a transportation provider device to switch from the online mode to an offline mode. Further, the disclosed systems can provide a map interface that indicates where a transportation provider device can switch from the offline mode to the online mode. Additionally, the disclosed systems can determine priorities associated with transportation provider devices and, based on the prioritization, selectively allow the transportation provider devices to switch from the offline mode to the online mode.
-
公开(公告)号:US12025448B2
公开(公告)日:2024-07-02
申请号:US16910109
申请日:2020-06-24
Applicant: Lyft, Inc.
Inventor: Michael Kae-Uei Chang , Janie Jia Gu , Demitri Nava , Guy-Baptiste Richard de Capele d'Hautpoul , Christopher John Selin , David Ikuye , Daniel Yu
IPC: G01C21/34 , G01C21/36 , G06F16/29 , G06F16/901 , G06Q50/40
CPC classification number: G01C21/3423 , G01C21/3453 , G01C21/3661 , G01C21/3664 , G06F16/29 , G06F16/9024 , G06Q50/40
Abstract: The disclosed computer-implemented method may include (i) receiving, by a dynamic transportation matching system, a request for transportation between initial waypoints, (ii) calculating, by the dynamic transportation matching system, a value metric for an initial driving route between the initial waypoints (iii) calculating a value metric for a walk-enabled driving route that comprises at least one alternate waypoint that is within a predetermined walking range of one of the initial waypoints, and (iv) improving, by the dynamic transportation matching system, a value of fulfilling the request for transportation by determining that a difference between the value metric of the walk-enabled driving route and the value metric of the initial driving route satisfies a walking-value threshold and selecting, based on the determination that the difference satisfies the walking-value threshold, the walk-enabled driving route for fulfilling the request for transportation. Various other methods, systems, and computer-readable media are also disclosed.
-
公开(公告)号:US11748789B2
公开(公告)日:2023-09-05
申请号:US16672242
申请日:2019-11-01
Applicant: Lyft, Inc.
Inventor: Helen Wai-Quen Bentley , Aidan Church , John Torres Fremlin , Matthew Lawrence Green , Mayank Gulati , Yilei Li , Demitri Nava , Mengqi Niu , Daniel Allen Sullivan , Garrett van Ryzin , Rachel Marie Wasko , Shashi Kant Sharma
IPC: G06Q30/02 , G06Q30/0283 , G06Q10/047 , G01C21/34 , G06Q10/063 , G06Q50/30 , G06Q10/02 , H04W4/021 , G06F16/29 , G06F9/4401 , G01C21/36 , G08G1/00
CPC classification number: G06Q30/0284 , G01C21/343 , G01C21/3438 , G01C21/3461 , G01C21/3484 , G01C21/3617 , G06F9/4418 , G06F16/29 , G06Q10/02 , G06Q10/047 , G06Q10/063 , G06Q50/30 , G08G1/202 , H04W4/021
Abstract: The disclosed systems can regulate access to an online mode for a dynamic transportation matching system. For example, based on a provider efficiency parameter associated with the dynamic transportation matching system, the disclosed systems can prevent a transportation provider device from switching to the online mode within a geographic area. In addition, the disclosed systems can detect a pattern of behavior and, based on a comparison between the pattern of behavior and a behavioral threshold, cause a transportation provider device to switch from the online mode to an offline mode. Further, the disclosed systems can provide a map interface that indicates where a transportation provider device can switch from the offline mode to the online mode. Additionally, the disclosed systems can determine priorities associated with transportation provider devices and, based on the prioritization, selectively allow the transportation provider devices to switch from the offline mode to the online mode.
-
公开(公告)号:US11645685B2
公开(公告)日:2023-05-09
申请号:US16672234
申请日:2019-11-01
Applicant: Lyft, Inc.
Inventor: Helen Wai-Quen Bentley , Aidan Church , John Torres Fremlin , Matthew Lawrence Green , Mayank Gulati , Yilei Li , Demitri Nava , Mengqi Niu , Daniel Allen Sullivan , Garrett van Ryzin , Rachel Marie Wasko , Shashi Kant Sharma
IPC: G06Q10/04 , G01C21/34 , G06Q10/06 , G06Q50/30 , G06Q10/02 , H04W4/021 , G06F16/29 , G01C21/36 , G08G1/00 , G06Q30/02 , G06F9/4401 , G06Q30/0283 , G06Q10/047 , G06Q10/063
CPC classification number: G06Q30/0284 , G01C21/343 , G01C21/3438 , G01C21/3461 , G01C21/3484 , G01C21/3617 , G06F9/4418 , G06F16/29 , G06Q10/02 , G06Q10/047 , G06Q10/063 , G06Q50/30 , G08G1/202 , H04W4/021
Abstract: The disclosed systems can regulate access to an online mode for a dynamic transportation matching system. For example, based on a provider efficiency parameter associated with the dynamic transportation matching system, the disclosed systems can prevent a transportation provider device from switching to the online mode within a geographic area. In addition, the disclosed systems can detect a pattern of behavior and, based on a comparison between the pattern of behavior and a behavioral threshold, cause a transportation provider device to switch from the online mode to an offline mode. Further, the disclosed systems can provide a map interface that indicates where a transportation provider device can switch from the offline mode to the online mode. Additionally, the disclosed systems can determine priorities associated with transportation provider devices and, based on the prioritization, selectively allow the transportation provider devices to switch from the offline mode to the online mode.
-
公开(公告)号:US20250166030A1
公开(公告)日:2025-05-22
申请号:US19033201
申请日:2025-01-21
Applicant: Lyft, Inc.
Inventor: Helen Wai-Quen Bentley , Aidan Church , John Torres Fremlin , Matthew Lawrence Green , Mayank Gulati , Yilei Li , Demitri Nava , Mengqi Niu , Daniel Allen Sullivan , Garrett van Ryzin , Rachel Marie Wasko , Shashi Kant Sharma
IPC: G06Q30/0283 , G01C21/34 , G01C21/36 , G06F9/4401 , G06F16/29 , G06Q10/02 , G06Q10/047 , G06Q10/063 , G06Q50/40 , G08G1/00 , H04W4/021
Abstract: The disclosed systems can regulate access to an online mode for a dynamic transportation matching system. For example, based on a provider efficiency parameter associated with the dynamic transportation matching system, the disclosed systems can prevent a transportation provider device from switching to the online mode within a geographic area. In addition, the disclosed systems can detect a pattern of behavior and, based on a comparison between the pattern of behavior and a behavioral threshold, cause a transportation provider device to switch from the online mode to an offline mode. Further, the disclosed systems can provide a map interface that indicates where a transportation provider device can switch from the offline mode to the online mode. Additionally, the disclosed systems can determine priorities associated with transportation provider devices and, based on the prioritization, selectively allow the transportation provider devices to switch from the offline mode to the online mode.
-
10.
公开(公告)号:US20240393119A1
公开(公告)日:2024-11-28
申请号:US18677552
申请日:2024-05-29
Applicant: Lyft, Inc.
Inventor: Michael Kae-Uei Chang , Janie Jia Gu , Demitri Nava , Guy-Baptiste Richard de Capele d'Hautpoul , Christopher John Selin , David Ikuye , Daniel Yu
IPC: G01C21/34 , G01C21/36 , G06F16/29 , G06F16/901 , G06Q50/40
Abstract: The disclosed computer-implemented method may include (i) receiving, by a dynamic transportation matching system, a request for transportation between initial waypoints, (ii) calculating, by the dynamic transportation matching system, a value metric for an initial driving route between the initial waypoints (iii) calculating a value metric for a walk-enabled driving route that comprises at least one alternate waypoint that is within a predetermined walking range of one of the initial waypoints, and (iv) improving, by the dynamic transportation matching system, a value of fulfilling the request for transportation by determining that a difference between the value metric of the walk-enabled driving route and the value metric of the initial driving route satisfies a walking-value threshold and selecting, based on the determination that the difference satisfies the walking-value threshold, the walk-enabled driving route for fulfilling the request for transportation. Various other methods, systems, and computer-readable media are also disclosed.
-
-
-
-
-
-
-
-
-