Abstract:
A nonvolatile semiconductor device is provided that includes a substrate and a plurality of blocks forming a string. Each block is positioned on the substrate and includes a plurality of word lines disposed on the substrate. The string includes a single ground select line disposed at one side of the plurality of blocks, and a single string select line is disposed at another side of the plurality of blocks. In some embodiments, the word lines of the plurality of blocks define gaps separating each block of the string from neighboring blocks of the string. One or more dummy word lines may be disposed in each gap between blocks of the string. Corresponding methods of manufacturing the nonvolatile semiconductor device and manipulating the nonvolatile semiconductor device are provided.
Abstract:
A nonvolatile semiconductor device is provided that includes a substrate and a plurality of blocks forming a string. Each block is positioned on the substrate and includes a plurality of word lines disposed on the substrate. The string includes a single ground select line disposed at one side of the plurality of blocks, and a single string select line is disposed at another side of the plurality of blocks. In some embodiments, the word lines of the plurality of blocks define gaps separating each block of the string from neighboring blocks of the string. One or more dummy word lines may be disposed in each gap between blocks of the string. Corresponding methods of manufacturing the nonvolatile semiconductor device and manipulating the nonvolatile semiconductor device are provided.
Abstract:
Methods and apparatuses are contemplated herein for enhancing the read performance and data retention of nonvolatile memory devices. In an example embodiment, a method is provided for controlling a nonvolatile memory device that includes a matrix of memory cells, wherein each memory cell in the matrix includes a programmable floating gate. The method includes programming a floating gate of a first memory cell of the nonvolatile memory device, and shifting a voltage of the floating gate of the first memory cell of the nonvolatile memory device by creating a coupling effect that impacts the floating gate of the first memory cell. In this regard, the method may include programming one or more nearby memory cells, in which case the coupling effect may comprise a floating gate coupling effect between the first memory cell and the one or more nearby memory cells.
Abstract:
First threshold voltages of one or more memory cells in a memory array are obtained. For each memory cell in the one or more memory cells, a target threshold voltage for the memory cell is identified. A number of programming shots to reach the target threshold voltage of the memory cell is determined based on the first threshold voltage of the memory cell. Respective number of programming shots, which are determined for the one or more memory cells, are applied to the one or more memory cells. Whether respective target threshold voltages for the one or more memory cells are reached is verified upon applying the respective number of programming shots to the one or more memory cells.
Abstract:
Provided are methods, devices, and/or the like for reducing the bit line interference when programming non-volatile memory. One method comprises providing a non-volatile memory device comprising a set of cells, each cell associated with a bit line; shooting a programming voltage across each cell; detecting a threshold voltage for each cell; identifying a fast subset of the set of cells and a slow subset of the set of cells based at least in part on the detected threshold voltage for each cell; and shooting the programming voltage until the threshold voltage for each cell is greater than a verify voltage. For each shot a fast bit line bias is applied to the bit line associated each cell of the fast subset and a slow bit line bias is applied to the bit line associated with each cell of the slow subset.
Abstract:
A nonvolatile semiconductor device is provided that includes a substrate and a plurality of blocks forming a string. Each block is positioned on the substrate and includes a plurality of word lines disposed on the substrate. The string includes a single ground select line disposed at one side of the plurality of blocks, and a single string select line is disposed at another side of the plurality of blocks. In some embodiments, the word lines of the plurality of blocks define gaps separating each block of the string from neighboring blocks of the string. One or more dummy word lines may be disposed in each gap between blocks of the string. Corresponding methods of manufacturing the nonvolatile semiconductor device and manipulating the nonvolatile semiconductor device are provided.