Abstract:
A controller coupled to a plurality of hardware modules is arranged for determining activities of at least two of the hardware modules in real time, and determining a voltage and a frequency for one of the hardware modules according to the activities of the at least two of the hardware modules.
Abstract:
Methods and apparatus are provided for adaptive optimization of low-power strategies. In one novel aspect, the device monitors one or more thermal-performance parameters and determines a plurality of operation scenarios for a plurality of corresponding low-power policies. Based on corresponding operation scenarios, the device selects corresponding low-power policy. The device applies different low-power strategy for temperature control based on low-power policies. Different low-power policy is applied to different low-power techniques, such as the DVFS, the CPU hot-plug, and the task migration. In another novel aspect, the device obtains one or more user-defined policy for each corresponding low-power technique. The selection of each low-power policy is further based on its corresponding user-defined policy. In one embodiment, the user-defined DVFS policy includes power policy, performance policy, and DVFS-balanced policy. The user-defined CPU hot-plug policy includes conservative policy, aggressive policy, and hot-plug-balanced policy. The user-defined task-migration policy includes performance policy, and task-migration-balanced policy.
Abstract:
Examples of a dual-system architecture capable of fast switching between the operating systems are provided. A first operating system may perform one or more operations associated with an apparatus as an active operating system of the apparatus. The active operating system may be switched from the first operating system to a second operating system for the second operating system to perform a task responsive to a determination that the second operating system is required to perform the task.
Abstract:
A graphics accelerator device offloads the workload of a graphics processing unit (GPU) by performing image composition and other specialized functions. The graphics accelerator device includes a rasterization module to rasterize a set of primitives to a set of pixels and generate information of the set of pixels. The graphics accelerator device also includes intra-process module to retrieve pixel values from a memory according to the information received from the rasterization module, perform mathematical calculations on the pixel values, and generate one or more processed image layers. The graphics accelerator device further includes an inter-process module to composite the one or more processed image layers received from the intra-process module with other image layers retrieved from the memory, and output a composited image to a display.
Abstract:
A computing system includes a multi-core processor and a core controller. The core controller is for: monitoring utilization of the multi-core processor; calculating a target performance index according to the utilization of the multi-core processor, a target utilization and a first performance index, wherein the first performance index is associated with a first entry of a dynamic voltage frequency scaling (DVFS) table that corresponds to a current setting for the multi-core processor; and selecting a second entry of the DVFS table that corresponds to a target-setting according to the target performance index and a second performance index that is associated with the second entry. The target-setting is used to configure the multi-core processor.
Abstract:
A switch interconnect is dynamically controlled at runtime to connect power sources to processing units in a multiprocessor system. Each power source is shareable by the processing units and each processing unit has a required voltage for processing a workload. When a system condition is detected at runtime, the switch interconnect is controlled to change a connection between at least one processing unit and a shared power source to maximize power efficiency. The shared power source is one of the power sources that supports multiple processing units having different required voltages.
Abstract:
Methods and apparatus are provided for adaptive optimization of low-power strategies. In one novel aspect, the device monitors one or more thermal-performance parameters and determines a plurality of operation scenarios for a plurality of corresponding low-power policies. Based on corresponding operation scenarios, the device selects corresponding low-power policy. The device applies different low-power strategy for temperature control based on low-power policies. Different low-power policy is applied to different low-power techniques, such as the DVFS, the CPU hot-plug, and the task migration. In another novel aspect, the device obtains one or more user-defined policy for each corresponding low-power technique. The selection of each low-power policy is further based on its corresponding user-defined policy. In one embodiment, the user-defined DVFS policy includes power policy, performance policy, and DVFS-balanced policy. The user-defined CPU hot-plug policy includes conservative policy, aggressive policy, and hot-plug-balanced policy. The user-defined task-migration policy includes performance policy, and task-migration-balanced policy.
Abstract:
A graphics accelerator device offloads the workload of a graphics processing unit (GPU) by performing image composition and other specialized functions. The graphics accelerator device includes a rasterization module to rasterize a set of primitives to a set of pixels and generate information of the set of pixels. The graphics accelerator device also includes intra-process module to retrieve pixel values from a memory according to the information received from the rasterization module, perform mathematical calculations on the pixel values, and generate one or more processed image layers. The graphics accelerator device further includes an inter-process module to composite the one or more processed image layers received from the intra-process module with other image layers retrieved from the memory, and output a composited image to a display.