Abstract:
Apparatuses and methods for performing multithread, concurrent access of different partition of a memory are disclosed herein. An example apparatus may include a non-volatile memory array comprising a plurality of partitions. Each of the plurality of partitions may include a respective plurality of memory cells. The apparatus may include a plurality of local controllers that each independently and concurrently access a respective one of the plurality of partitions to execute a respective memory access command of a plurality of memory access commands. The apparatus may include a controller to receive the plurality of memory access commands and to determine a respective target partition of the plurality of partitions for each of the plurality of memory access commands. The controller may be provide each of the plurality of memory access commands to a local controller of the plurality of local controllers associated with the respective target partition.
Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Subject matter disclosed herein relates to a memory device, and more particularly to a self-aligned cross-point phase change memory-switch array and methods of fabricating same.
Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Methods of forming memory cells comprising phase change and/or chalcogenide materials are disclosed. In one aspect, the method includes providing a lower line stack extending in a first direction, the lower line stack comprising a sacrificial line over a lower conductive line. The method further includes forming a chalcogenide line extending in the first direction by selectively removing the sacrificial material of the sacrificial line and replacing the sacrificial line with a chalcogenide material.
Abstract:
Apparatuses and methods for performing multithread, concurrent access of different partition of a memory are disclosed herein. An example apparatus may include a non-volatile memory array comprising a plurality of partitions. Each of the plurality of partitions may include a respective plurality of memory cells. The apparatus may further include a plurality of local controllers that are each configured to independently and concurrently access a respective one of the plurality of partitions to execute a respective memory access command of a plurality of memory access commands responsive to receiving the respective memory access command. The example apparatus may further include a controller configured to receive the plurality of memory access commands and to determine a respective target partition of the plurality of partitions for each of the plurality of memory access commands. The controller may be further configured to provide each of the plurality of memory access commands to a local controller of the plurality of local controllers associated with the respective target partition.
Abstract:
Apparatuses and methods for performing multithread, concurrent access of different partition of a memory are disclosed herein. An example apparatus may include a non-volatile memory array comprising a plurality of partitions. Each of the plurality of partitions may include a respective plurality of memory cells. The apparatus may further include a plurality of local controllers that are each configured to independently and concurrently access a respective one of the plurality of partitions to execute a respective memory access command of a plurality of memory access commands responsive to receiving the respective memory access command. The example apparatus may further include a controller configured to receive the plurality of memory access commands and to determine a respective target partition of the plurality of partitions for each of the plurality of memory access commands. The controller may be further configured to provide each of the plurality of memory access commands to a local controller of the plurality of local controllers associated with the respective target partition.