Abstract:
A semiconductor apparatus includes a capacitor having a substrate, a conductive element and an insulator. The insulator comprises a substantially monocrystalline material having a relatively high dielectric constant. The semiconductor apparatus may further include a supplemental layer having a depletion zone, suitably comprised of a high-resistivity semiconductor material, for forming a voltage-variable capacitor. To facilitate the growth of the insulator and/or other layers, the various layers are suitably lattice matched. Further, the apparatus may include one or more interface layers to facilitate lattice-matching of the various layers.
Abstract:
High quality epitaxial layers of monocrystalline materials can be grown overlying large silicon wafers by first growing an accommodating buffer layer (104) on a silicon wafer (102). The accommodating buffer layer (104) is a layer of monocrystalline material spaced apart from the silicon wafer (102) by an amorphous interface layer (108) of silicon oxide. The amorphous interface layer dissipates strain and permits the growth of a high quality monocrystalline accommodating buffer layer. Any lattice mismatch between the accommodating buffer layer and the underlying silicon substrate is taken care of by the amorphous interface layer. Utilizing this technique permits the fabrication of thin film pyroelectric devices (150) on a monocrystalline silicon substrate.
Abstract:
A quantum structure (300) having photo-catalytic properties includes a monocrystalline substrate (302) and a monocrystalline metal oxide layer (308) formed of a material comprising titanium and oxygen and epitaxially grown overlying the substrate. The quantum structure further includes self-assembled quantum dots (312) disposed on the monocrystalline metal oxide layer and formed of a material comprising copper and oxygen.
Abstract:
A method for fabricating a semiconductor structure comprises the steps of providing a silicon substrate (10) having a surface (12); forming on the surface of the silicon substrate an interface (14) comprising a single atomic layer of silicon, oxygen, and a metal; and forming one or more layers of a single crystal oxide (26) on the interface. The interface comprises an atomic layer of silicon, oxygen, and a metal in the form XSiO2, where X is a metal.