摘要:
According to one embodiment, a semiconductor device includes an interlayer insulation film provided on a substrate including a Cu wiring, a via hole formed in the interlayer insulation film on the Cu wiring, a first metal film selectively formed on the Cu wiring in the via hole, functioning as a barrier to the Cu wiring, and functioning as a promoter of carbon nanotube growth, a second metal film formed at least on the first metal film in the via hole, and functioning as a catalyst of the carbon nanotube growth, and carbon nanotubes buried in the via hole in which the first metal film and the second metal film are formed.
摘要:
According to one embodiment, a carbon nanotube interconnect includes a first interconnection layer, an interlayer dielectric film, a second interconnection layer, a contact hole, a plurality of carbon nanotubes and a film. The interlayer dielectric film is formed on the first interconnection layer. The second interconnection layer is formed on the interlayer dielectric film. The contact hole is formed in the interlayer dielectric film between the first interconnection layer and the second interconnection layer. The carbon nanotubes are formed in the contact hole. The carbon nanotubes have a first end connected to the first interconnection layer and a second end connected to the second interconnection layer. The film is formed between the interlayer dielectric film and the second interconnection layer. The film has a portion filled between the second ends of the carbon nanotubes.
摘要:
A semiconductor device of an embodiment includes: a substrate; a first catalytic metal film on the substrate; graphene on the first catalytic metal film; an interlayer insulating film on the graphene; a contact hole penetrating through the interlayer insulating film; a conductive film at the bottom portion of the contact hole, the conductive film being electrically connected to the graphene; a second catalytic metal film on the conductive film, the second catalytic metal film being subjected to plasma processing with at least one kind of gas selected from hydrogen, nitrogen, ammonia, and rare gas; and carbon nanotubes on the second catalytic metal film.
摘要:
According to one embodiment, a semiconductor device is disclosed. The device includes a semiconductor substrate, and an interconnection above the semiconductor substrate. The interconnection includes a co-catalyst layer, a catalyst layer on the co-catalyst layer, and a graphene layer on the catalyst layer. The co-catalyst layer includes a portion contacting the catalyst layer. The portion has a face-centered cubic structure with a (111) plane oriented parallel to a surface of the semiconductor substrate. The catalyst layer has a face-centered cubic structure with a (111) plane oriented parallel to the surface of the semiconductor substrate.
摘要:
A semiconductor device of an embodiment includes: a substrate; a first catalytic metal film on the substrate; graphene on the first catalytic metal film; an interlayer insulating film on the graphene; a contact hole penetrating through the interlayer insulating film; a conductive film at the bottom portion of the contact hole, the conductive film being electrically connected to the graphene; a second catalytic metal film on the conductive film, the second catalytic metal film being subjected to plasma processing with at least one kind of gas selected from hydrogen, nitrogen, ammonia, and rare gas; and carbon nanotubes on the second catalytic metal film.
摘要:
According to one embodiment, a semiconductor device is disclosed. The device includes a semiconductor substrate, and an interconnection above the semiconductor substrate. The interconnection includes a co-catalyst layer, a catalyst layer on the co-catalyst layer, and a graphene layer on the catalyst layer. The co-catalyst layer includes a portion contacting the catalyst layer. The portion has a face-centered cubic structure with a (111) plane oriented parallel to a surface of the semiconductor substrate. The catalyst layer has a face-centered cubic structure with a (111) plane oriented parallel to the surface of the semiconductor substrate.
摘要:
a manufacturing method of a semiconductor substrate includes the following steps: forming a first wiring layer on a substrate; forming an interlayer insulating film having a via hole on the wiring layer; forming carbon nanotubes in the via hole; performing a fluorination treatment entirely to the substrate; forming an embedded film in the via hole having the carbon nanotubes therein; and polishing the substrate to entirely flatten the substrate.
摘要:
A manufacturing method of a semiconductor substrate includes the following steps: forming a first wiring layer on a substrate; forming an interlayer insulating film having a via hole on the wiring layer; forming carbon nanotubes in the via hole; performing a fluorination treatment entirely to the substrate; forming an embedded film in the via hole having the carbon nanotubes therein; and polishing the substrate to entirely flatten the substrate.
摘要:
A carbon nanotube manufacturing apparatus includes a plasma generating unit that generates plasma including ions, radicals, and electrons, from gas; a carbon nanotube manufacturing unit that manufactures carbon nanotubes from the radicals; a shielding electrode unit that is provided between the plasma generating unit and the carbon nanotube manufacturing unit and prevents the ions and the electrons from entering the carbon nanotube manufacturing unit; and a bias applying unit that applies a voltage to the shielding electrode unit, wherein the shielding electrode unit includes at least two first shielding electrodes that are arranged one above another, each of the first shielding electrodes having at least one opening.
摘要:
A semiconductor device according to the present embodiment includes a diamond substrate having a surface plane inclined from a (100) plane in a range of 10 degrees to 40 degrees in a direction of ±10 degrees, and an n-type diamond semiconductor layer containing phosphorus (P) and formed above the surface plane described above.