摘要:
An electrically-erasable, electrically-programmable, read-only-memory cell array is formed in pairs at a face of a semiconductor substrate (22). Each memory cell includes a source region (11) and a drain region (12), with a corresponding channel region between. A Fowler-Nordheim tunnel-window (13a) is located over the source line (17) connected to source (11). A floating gate (13) includes a tunnel-window section. A control gate (14) is disposed over the floating gate (13), insulated by an intervening inter-level dielectric (27). The floating gate (13) and the control gate (14) include a channel section (Ch). The channel section (Ch) is used as a self-alignment implant mask for the source (11) and drain (12) regions, such that the channel-junction edges are aligned with the corresponding edges of the channel section (Ch). The memory cell is programmed by hot-carrier injection from the channel to the floating gate (13), and erased by Fowler-Nordheim tunneling from the floating gate (13) through the tunnel window (13a) to the source-line (17 ). The program and erase regions of the cells are physically separate from each other, and the characteristics, including the oxides, of each of those regions may be made optimum independently from each other.
摘要:
An electrically-erasable, electrically-programmable read-only memory cell 10 is formed at a face of a layer of semiconductor 30 of a first conductivity type. A first source/drain region 16 and a second source/drain region 20 are formed in the face of layer of semiconductor 30 of a second conductivity type opposite the first conductivity type and spaced by a first channel area 50. A third source/drain region 18 is formed in the face of semiconductor layer 30 of the second conductivity type spaced from second source/drain region 20 by a second channel area 52. A thick insulator region 44 is formed adjacent at least a portion of second source/drain region 20 and includes a lateral margin of sloped thickness overlying a corresponding lateral margin of second source/drain region 20. The corresponding lateral margin of second source/drain region 20 has a graded dopant concentration directly proportionate with the sloped thickness of the overlying lateral margin of thick insulator region 44. A differentially grown insulator region 54 overlies second source/drain region 20 and includes a lateral margin of sloped thickness. A thin insulator tunneling window 62 overlies an area 60 of second source/drain region 20, tunneling window 62 formed between and spacing the lateral margin of the thick insulator region 44 and the lateral margin of differentially grown insulator region 54. A floating gate conductor 26 is disposed adjacent tunneling window 62 and insulatively adjacent second channel area 52. A control gate conductor 28 is disposed insulatively adjacent floating gate conductor 28. A gate conductor 24 is disposed insulatively adjacent first channel area 50.
摘要:
An electrically-erasable, electrically-programmable ROM or an EEPROM is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small self-aligned tunnel window positioned on the opposite side of the source from the channel and drain, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. In this cell, the bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window area on the outside of the source (spaced from the channel). The tunnel window has a thinner dielectric than the remainder of the floating gate to allow Fowler-Nordheim tunneling.
摘要:
An electrically-erasable, electrically-programmable ROM or an EEPROM is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small self-aligned tunnel window positioned on the opposite side of the source from the channel and drain, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. In this cell, the bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window area on the outside of the source (spaced from the channel). The tunnel window has a thinner dielectric than the remainder of the floating gate to allow Fowler-Nordheim tunneling.
摘要:
An integrated circuit structure and process relating to a self-aligned window at the recessed junction of two insulating regions formed on the surface of a semiconductor body. The window may include a trench forming an isolation region between doped semiconductor regions, or may include an electrical conductor connected to a doped semiconductor region, or may include an electrical conductor separated from doped semiconductor regions by an electrical insulator. Embodiments include, but are not limited to, a field-effect transistor, a tunnelling area for a floating gate transistor, and an electrical connection to a doped area of the substrate.
摘要:
A wordline-decode system of a nonvolatile memory array is split into three smaller decoding subsystems (a Read-Mode Decode Subsystem, a Program/Erase-Mode Decode Subsystem and a Segment-Select Decoder Subsystem). The segmented array has small bitline capacitance and requires few input connections to each decoding subsystem. The Read-Mode Decoder circuitry and the Program/Erase-Mode Decoder circuitry are separated, allowing the Read-Mode Decoder circuitry to be desired for high speed access and allowing the Program/Erase-Mode Decoder circuitry to be desired for high voltage operation. Buried-bitline segment-select transistors reduce the area required for those transistors. Erasing may be performed after first checking each row of a segment to determine the present of any over-erased cells. Programming may be performed by allowing the common source-column lines of the selected segment to float and by placing preselected voltages on the appropriate wordline and drain-column line.
摘要:
A method is described for programming an array of EEPROM cells. Programming occurs through a Fowler-Nordheim tunnel window (34) between a source bitline (24) and a floating gate conductor (42) of a selected cell. The voltages applied to the control gate and to the source are selected to differ sufficiently to cause electrons to be drawn through the tunnel window (34) from the source region (24) to the floating gate conductor (42). The non-selected bitlines have a voltage impressed thereon that is of sufficient value to prevent inadvertent programming of cells in the selected row. The non-selected wordlines (48) have a voltage impressed thereon that is of sufficient value to prevent erasing of programmed non-selected cells.
摘要:
An electrically-erasable, electrically-programmable, read-only-memory cell array is formed in pairs at a face of a semiconductor substrate (22). Each memory cell includes a source region (11) and a drain region (12), with a corresponding channel region between. A Fowler-Nordheim tunnel-window (13a) is located over the source line (17) connected to source (11). The source line (17) consists of alternating buried N+ windows (17a) and source regions (11). A floating gate (13) includes a tunnel-window section. A control gate (14) is disposed over the floating gate (13), insulated by an intervening inter-level dielectric (27). The floating gate (13) and the control gate (14) include a channel section (Ch). The channel section (Ch) is used as a self-alignment implant mask for the source (11) and drain (12) regions, such that the channel-junction edges are aligned with the corresponding edges of the channel section (Ch). The memory cell is programmed by hot-carrier injection from the channel to the floating gate (13), and erased by Fowler-Nordheim tunneling from the floating gate (13) through the tunnel window (13a) to the source-line (17). The program and erase regions of the cells are physically separate from each other, and the characteristics, including the oxides, of each of those regions may be made optimum independently from each other.
摘要:
A method is described for programming a semiconductor array of EEPROM cells. A selected cell is connected, by definition, to a selected source-column line, a selected drain-column line and a selected wordline. Each deselected memory cell in the array is connected to a deselected source-column line, a deselected drain-column line and/or a deselected wordline. The method includes preselecting first, second, third, fourth and fifth programming voltages such that the second programming voltage is more positive than the first programming voltage and such that the third, fourth and fifth programming voltages are intermediate between the first and second programming voltages. The first programming voltage is applied at least to a selected column line and to each of the same-type deselected column lines. The third programming voltage is applied to the selected wordline and the fourth programming voltage is applied to each deselected wordline. After a pre-charge time interval, the fifth programming voltage is applied to each same-type deselected column line and, after an optional additional pre-charge time interval, the second programming voltage is applied to the selected wordline. After a program time interval, the third programming voltage is applied to the selected wordline and, after an optional discharge time interval, the first programming voltage is applied to each same-type deselected column line. Each deselected wordline is maintained at the fourth programming voltage for an additional discharge time interval. The third, fourth and fifth programming voltages may have the same value.
摘要:
A pair of electrically erasable, electrically programmable memory cells are formed at a face of a semiconductor layer (10) and include respective source regions (30a, 30b), a shared drain region (28) and respective channel regions (38a, 38b). Each cell has a floating gate conductor (46a, 46b) that controls the conductance of a respective subchannel region (74a, 74b) and may be programmed through Fowler-Nordheim electron tunneling through a respective tunnel oxide window (40a, 40b) from a respective source region (30a, 30b). A field plate conductor (40a) controls the conductance of respective subchannel regions (70a, 70b) within each channel region (38a, 38b). A word line or control gate conductor (62) is insulatively disposed adjacent respective third, remaining channel subregions (53a, 53b) and further is disposed insulatively adjacent the floating gates (46a, 46b) to program or erase them.