摘要:
In the formation of a semiconductor device, one or more hardmasks are formed during a process for patterning a device feature. One or more of the hardmasks is subjected to an isotropic etch to trim the hardmask prior to patterning an underlying layer. The trimmed hardmask layer is preferably an amorphous carbon layer.
摘要:
A hardmask stack is comprised of alternating layers of doped amorphous carbon and undoped amorphous carbon. The undoped amorphous carbon layers serve as buffer layers that constrain the effects of compressive stress within the doped amorphous carbon layers to prevent delamination. The stack is provided with a top capping layer. The layer beneath the capping layer is preferably undoped amorphous carbon to reduce photoresist poisoning. An alternative hardmask stack is comprised of alternating layers of capping material and amorphous carbon. The amorphous carbon layers may be doped or undoped. The capping material layers serve as buffer layers that constrain the effects of compressive stress within the amorphous carbon layers to prevent delamination. The top layer of the stack is formed of a capping material. The layer beneath the top layer is preferably undoped amorphous carbon to reduce photoresist poisoning. The lowest layer of the hardmask stack is preferably amorphous carbon to facilitate easy removal of the hardmask stack from underlying materials by an ashing process.
摘要:
A silicon oxide stress relief portion is provided between an amorphous carbon hardmask and a polysilicon layer to be etched to form a gate line. The stress relief portion relieves stress between the hardmask and the polysilicon, thereby reducing the risk of delamination of the hardmask prior to patterning of the polysilicon. The stress relief portion may be trimmed prior to patterning and used as an etch mask for patterning the polysilicon. The amorphous carbon hardmasked may be trimmed prior to patterning the stress relief portion to achieve a further reduction in gate line width.
摘要:
A bottom anti-reflective coating comprising an organic polymer layer having substantially no nitrogen and a low compressive stress in relation to a polysilicon layer is employed as the lower layer of a bi-layer antireflective coating/hardmask structure to reduce deformation of a pattern to be formed in a patternable layer. The organic polymer layer is substantially transparent to visible radiation, enabling better detection of alignment marks during a semiconductor device fabrication process and improving overlay accuracy. The organic polymer layer provides excellent step coverage and may be advantageously used in the fabrication of structures such as FinFETs.
摘要:
To reduce the width of a MOSFET gate, the gate is formed with a hardmask formed thereupon. An isotropic etch is then performed to trim the gate in order to reduce the width of the gate. The resulting gate may be formed with a width that is narrower than a minimum width achievable solely through conventional projection lithography techniques.
摘要:
A layer of material is patterned anisotropically using a bi-layer hardmask structure. Residual photoresist from a photoresist mask used to pattern an upper layer of the bi-layer hardmask is removed prior to patterning of the polysilicon layer. Passivation agents are later introduced from an external source during patterning of the layer of material. This provides a substantially uniform supply of passivation agents to all parts of the layer of material as it is being etched, rather than relying on the generation of passivation agents from consumption of photoresist during etching, which can produce local non-uniformities of passivation agent availability owing to differences in photoresist thickness remaining on different sized features.
摘要:
To reduce the width of a MOSFET gate, the gate is formed with a hardmask formed thereupon. An isotropic etch is then performed to trim the gate in order to reduce the width of the gate. The resulting gate may be formed with a width that is narrower than a minimum width achievable solely through conventional projection lithography techniques.
摘要:
An amorphous carbon layer is implanted with one or more dopants that enhance the etch resistivity of the amorphous carbon to etchants such as chlorine and HBr that are typically used to etch polysilicon. Such a layer may be pattern to form a handmask for etching polysilicon that provides improved pattern transfer accuracy compared to conventional undoped amorphous carbon.
摘要:
In one embodiment, the present invention relates to a method of forming a metal line, involving the steps of providing a semiconductor substrate comprising a metal layer, an oxide layer over the metal layer, and a silicon layer over the oxide layer; depositing an ultra-thin photoresist over the silicon layer, the ultra-thin photoresist having a thickness less than about 2,000 .ANG.; irradiating the ultra-thin photoresist with electromagnetic radiation having a wavelength of about 250 nm or less; developing the ultra-thin photoresist exposing a portion of the silicon layer; etching the exposed portion of the silicon layer exposing a portion of the oxide layer; etching the exposed portion of the oxide layer exposing a portion of the metal layer; and etching the exposed portion of the metal layer thereby forming the metal line.
摘要:
A method of forming a via structure is provided. In the method, a dielectric layer is formed on an anti-reflective coating (ARC) layer covering a first metal layer; and a transition metal layer is formed on the dielectric layer. An ultra-thin photoresist layer is formed on the transition metal layer, and the ultra-thin photoresist layer is patterned with short wavelength radiation to define a pattern for a via. The patterned ultra-thin photoresist layer is used as a mask during a first etch step to transfer the via pattern to the transition metal layer. The first etch step includes an etch chemistry that is selective to the transition metal layer over the ultra-thin photoresist layer and the dielectric layer. The transition metal layer is employed as a hard mask during a second etch step to form a contact hole corresponding to the via pattern by etching portions of the dielectric layer.