摘要:
Forming metal gate transistors that have different work functions is disclosed. In one example, a first metal, which is a ‘mid gap’ metal, is manipulated in first and second regions by second and third metals, respectively, to move the work function of the first metal in opposite directions in the different regions. The resulting work functions in the different regions correspond to that of different types of the transistors that are to be formed.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
摘要:
The present invention provides a method of forming a dual work function metal gate microelectronics device 200. In one aspect, the method includes forming nMOS and pMOS stacked gate structures 315a and 315b. The nMOS and pMOS stacked gate structures 315a and 315b each comprise a gate dielectric 205, a first metal layer, 305 located over the gate dielectric 205 and a sacrificial gate layer 310 located over the first metal layer 305. The method further includes removing the sacrificial gate layer 310 in at least one of the nMOS or pMOS stacked gate structures, thereby forming a gate opening 825 and modifying the first metal layer 305 within the gate opening 825 to form a gate electrode with a desired work function.
摘要:
The present invention pertains to annealing a high dielectric constant (high-k) material in a manner that substantially reduces or eliminates disadvantages and problems heretofore associated with the same. In particular, the high-k material is annealed in an ambient having a single chemistry of nitrogen and hydrogen, such as ammonia (NH3), to nitride and react unwanted impurities, and an oxidizer to oxidize and densify the high-k material, while mitigating growth of a lower-k material at an interface of the high-k material and an underlying substrate. Additionally, particular temperatures and pressures are utilized within the process so that the risk of an undesired exothermic reaction is mitigated. Annealing the high-k material in accordance with manners disclosed herein has application to semiconductor fabrication processes and, as such, is discussed herein within the context of the same.
摘要:
A method for improving high-κ gate dielectric film (104) properties. The high-κ film (104) is subjected to a two step anneal sequence. The first anneal is performed in a reducing ambient (106) with low partial pressure of oxidizer to promote film relaxation and increase by-product diffusion and desorption. The second anneal is performed in an oxidizing ambient (108) with a low partial pressure of reducer to remove defects and impurities.
摘要:
A system and method for manufacturing semiconductor devices with dielectric layers having a dielectric constant greater than silicon dioxide includes depositing a dielectric layer on a substrate and subjecting the dielectric layer to a plasma to reduce top surface roughness in the dielectric layer.
摘要:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
摘要:
The present invention provides, in one embodiment, a process for forming a dual work function metal gate semiconductor device (100). The process includes providing a semiconductor substrate (105) having a gate dielectric layer (110) thereon and a metal layer (205) on the gate dielectric layer. A work function of the metal layer is matched to a conduction band or a valence band of the semiconductor substrate. The process also includes forming a conductive barrier layer (210) on a portion (215) of the metal layer and a material layer (305) on the metal layer. The metal layer and the material layer are annealed to form a metal alloy layer (405) to thereby match a work function of the metal alloy layer to another of the conduction band or the valence band of the substrate. Other embodiments of the invention include a dual work function metal gate semiconductor device (900) and an integrated circuit (1000).
摘要:
Semiconductor devices and fabrication methods are provided, in which metal transistor gates are provided for MOS transistors. Metal boride is formed above a gate dielectric to create PMOS gate structures and metal nitride is formed over a gate dielectric to provide NMOS gate structures. The metal portions of the gate structures are formed from an initial starting material that is either a metal boride or a metal nitride, after which the starting material is provided with boron or nitrogen in one of the PMOS and NMOS regions through implantation, diffusion, or other techniques, either before or after formation of the conductive upper material, and before or after gate patterning. The change in the boron or nitrogen content of the starting material provides adjustment of the material work function, thereby tuning the threshold voltage of the resulting PMOS or NMOS transistors.
摘要:
Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.