摘要:
An easily slidable polyimide film having a polyimide surface layer comprising a polyimide which is thermoplastic and has a glass transition temperature of 190–450° C., wherein there are dispersed in the polyimide of the polyimide surface layer, in a proportion of approximately 0.5–10 mass % based on the polyimide of the polyimide surface layer, wholly aromatic polyimide particles made of a polyimide comprising at least 80 mass % of a pyromellitic acid component and a p-phenylenediamine component, and having a median size of 0.3–0.8 μm and a maximum size of no greater than 2 μm, in at least about 1 μm of the polyimide surface layer.
摘要:
An easily slidable polyimide film having a polyimide surface layer comprising a polyimide which is thermoplastic and has a glass transition temperature of 190-450° C., wherein there are dispersed in the polyimide of the polyimide surface layer, in a proportion of approximately 0.5-10 mass % based on the polyimide of the polyimide surface layer, wholly aromatic polyimide particles made of a polyimide comprising at least 80 mass % of a pyromellitic acid component and a p-phenylenediamine component, and having a median size of 0.3-0.8 μm and a maximum size of no greater than 2 μm, in at least about 1 μm of the polyimide surface layer.
摘要:
An adhesion-enhanced polyimide film which includes a core layer composed of a polyimide (a) having high rigidity and a low linear expansion coefficient, at least one side of which has a thin-layer formed by heating a coated layer including a heat-resistant surface treatment agent and a polyimide precursor which yields a highly heat-resistant amorphous polyimide (B).
摘要:
An adhesion-enhanced polyimide film which includes a core layer composed of a polyimide (a) having high rigidity and a low linear expansion coefficient, at least one side of which has a thin-layer formed by heating a coated layer including a heat-resistant surface treatment agent and a polyimide precursor which yields a highly heat-resistant amorphous polyimide (B).
摘要:
A metal film/aromatic polyimide film laminate is composed of a composite aromatic polyimide film and a metal film, in which the composite aromatic polyimide film is composed of an aromatic polyimide substrate film having a linear expansion coefficient of 5×10−6 to 30×10−6 cm/cm/° C. in the temperature range of 50-200° C. (measured in machine direction), and a thin aromatic polyimide layer of polyimide prepared from a carboxylic acid component comprising a mixture of 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 2,3,3′,4′-biphenyltetracarboxylic dianhydride in a molar ratio of 50:50 to 90:10 and an aromatic diamine component composed of 1,3-bis(4-aminophenoxy)benzene or a mixture of 1,3-bis(4-aminophenoxy)benzene and p-phenylenediamine and/or diaminodiphenyl ether in a molar ratio of 10/90 or more. Tg of the thin polyimide layer is 210-310° C. The metal film is fixed to the thin polyimide layer at a 90° peel resistance of 0.5 kg/cm or higher, while the thin polyimide layer is bonded to the substrate film at a 90° peel resistance higher than that between the metal film and the thin layer.
摘要翻译:金属膜/芳香族聚酰亚胺膜层叠体由复合芳香族聚酰亚胺膜和金属膜构成,其中复合芳香族聚酰亚胺膜由线性膨胀系数为5×10 -6〜30×10 6的芳香族聚酰亚胺基材膜构成, 在50-200℃的温度范围(在机器方向上测量),并且由包含3,3'的混合物的羧酸组分制备的聚酰亚胺薄芳香族聚酰亚胺层为-6> cm / cm / ,4,4'-联苯四羧酸二酐和摩尔比为50:50至90:10的2,3,3',4'-联苯四羧酸二酐和由1,3-双(4-氨基苯氧基) 苯或1,3-二(4-氨基苯氧基)苯和对苯二胺和/或二氨基二苯醚的摩尔比为10/90以上的混合物。 薄聚酰亚胺层的Tg为210〜310℃。金属膜以0.5kg / cm以上的90°剥离电阻固定在薄聚酰亚胺层上,同时将薄聚酰亚胺层以 90°剥离阻力高于金属膜与薄层之间的剥离强度。
摘要:
In a heat-resistant aromatic polyimide/metal (or metal oxide) composite sheet composed of an aromatic polyimide film and a metal or metal oxide layer arranged on the film, the polyimide film is composed of an aromatic polyimide resin and an Al-containing material dispersed in the polyimide resin in an amount of 1 to 1,000 ppm per the amount of polyimide film, and the metal or metal oxide layer is formed on the polyimide film via no adhesive.
摘要:
A method of surface treating a polyimide film to impart improved adhesion to metal which comprises treating the surface of a polyimide film having a biphenyltetracarboxylic acid component by contact to a solution containing potassium permanganate and/or sodium permanganate and potassium hydroxide and/or sodium hydroxide and treating said surface with an acid.
摘要:
A copper-clad laminate is composed of a copper foil and an aromatic polyimide film placed thereon, in which the copper foil is bonded to the polyimide film at a bonding strength of ≧500 N/m and the polyimide film shows a light transmittance of ≧40% for a light of wavelength of 600 nm and a haze of ≧30% [the light transmittance and haze are values measured after the copper foil is removed by etching].
摘要:
An aromatic polyimide film for producing an electro-conductive sealing element of a packaged semi-conductor device, has a thickness of 20 to 60 μm, a moisture vapor transmission coefficient of 0.05 to 0.8 g/mm/m2·24 hrs, a water absorption ratio of 2.0% or less, and an elastic modulus in tension of 5,000 MPa or more, in which a surface of the polyimide film has been treated with reduced-pressure plasma discharge.
摘要:
The present invention provides a piezoelectric film element with improved adhesion between a first protective film and a substrate. This invention also provides a method of manufacturing a piezoelectric film element, which makes it possible to selectively form, by a hydrothermal synthesis, a piezoelectric film with excellent piezoelectric properties in a specified area. This piezoelectric element comprises, over a substrate 12: a piezoelectric film; a common electrode and an individual electrode located to hold the piezoelectric film in between; a first protective film 14 which is formed over almost the entire surface of the substrate 12 and which protects the substrate 12 to avoid the formation of the piezoelectric film directly over the substrate 12; and a base film 16 which is formed over the first protective film 14 in the area for forming the piezoelectric film, and which functions as a base when the piezoelectric film is caused to grow to be formed. The piezoelectric film is formed over the base film 16.