摘要:
In a semiconductor device, a trench gate has a bottom portion in a drift layer and a communication portion extending from a surface of a base layer to communicate with the bottom portion. A distance between adjacent bottom portions is smaller than a distance between adjacent communication portions in a x-direction. A region between adjacent trench gates is divided in a y-direction into an effective region as an electron injection source and an ineffective region which does not serve as the electron injection source. An interval L1 (>0) of the ineffective region in the y-direction, a length D1 of the communication portion in the z-direction, and a length D2 of the bottom portion in the z-direction satisfy L1≦2(D1+D2). The z-direction is orthogonal to a x-y plane defined by the x-direction and the y-direction which are orthogonal to each other.
摘要:
A semiconductor device includes a drift layer, a base layer on the drift layer, and trench gate structures. Each trench gate structure includes a trench reaching the drift layer by penetrating the base layer, a gate insulation layer on a wall surface of the trench, and a gate electrode on the gate insulation layer. A bottom portion of the trench gate structure is located in the drift layer and expands in a predetermined direction so that a distance between the bottom portions of adjacent trench gate structures is less than a distance between opening portions of adjacent trench gate structures in the direction. A thickness of the gate insulation layer is greater in the bottom portion than in the opening portion.
摘要:
In a semiconductor device, a trench gate has a bottom portion in a drift layer and a communication portion extending from a surface of a base layer to communicate with the bottom portion. A distance between adjacent bottom portions is smaller than a distance between adjacent communication portions in a x-direction. A region between adjacent trench gates is divided in a y-direction into an effective region as an electron injection source and an ineffective region which does not serve as the electron injection source. An interval L1 (>0) of the ineffective region in the y-direction, a length D1 of the communication portion in the z-direction, and a length D2 of the bottom portion in the z-direction satisfy L1≦2(D1+D2). The z-direction is orthogonal to a x-y plane defined by the x-direction and the y-direction which are orthogonal to each other.
摘要:
A drive controller for driving an inductive load connected to a node between first and second switches connected in series with a direct current voltage source includes a first diode, a series circuit of a second diode and an inductor, and a control circuit. The first diode is a parasitic diode of the first switch and connected in antiparallel with the first switch. The series circuit is connected in parallel with the first diode. The control circuit drives the inductor load by applying a control voltage to the first switch before applying a first ON-voltage to the second switch. The first ON-voltage turns ON the second switch. The control voltage is greater than zero and less than a second ON-voltage. The second ON-voltage turns ON the first switch. The control voltage causes the first switch to operate in weak inversion.
摘要:
A drive controller for driving an inductive load connected to a node between first and second switches connected in series with a direct current voltage source includes a first diode, a series circuit of a second diode and an inductor, and a control circuit. The first diode is a parasitic diode of the first switch and connected in antiparallel with the first switch. The series circuit is connected in parallel with the first diode. The control circuit drives the inductor load by applying a control voltage to the first switch before applying a first ON-voltage to the second switch. The first ON-voltage turns ON the second switch. The control voltage is greater than zero and less than a second ON-voltage. The second ON-voltage turns ON the first switch. The control voltage causes the first switch to operate in weak inversion.
摘要:
A semiconductor device includes: a substrate; multiple first and second conductive type regions on the substrate for providing a super junction structure; a channel layer on the super junction structure; a first conductive type layer in the channel layer; a contact second conductive type region in the channel layer; a gate electrode on the channel layer via a gate insulation film; a surface electrode on the channel layer; a backside electrode on the substrate opposite to the super junction structure; and an embedded second conductive type region. The embedded second conductive type region is disposed in a corresponding second conductive type region, protrudes into the channel layer, and contacts the contact second conductive type region. The embedded second conductive type region has an impurity concentration higher than the channel layer, and has a maximum impurity concentration at a position in the corresponding second conductive type region.
摘要:
A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
摘要:
A semiconductor device includes a switching element having: a drift layer; a base region; an element-side first impurity region in the base region; an element-side gate electrode sandwiched between the first impurity region and the drift layer; a second impurity region contacting the drift layer; an element-side first electrode coupled with the element-side first impurity region and the base region; and an element-side second electrode coupled with the second impurity region, and a FWD having: a first conductive layer; a second conductive layer; a diode-side first electrode coupled to the second conductive layer; a diode-side second electrode coupled to the first conductive layer; a diode-side first impurity region in the second conductive layer; and a diode-side gate electrode in the second conductive layer sandwiched between first impurity region and the first conductive layer and having a first gate electrode as an excess carrier injection suppression gate.
摘要:
A semiconductor device includes: a SOI substrate including a support layer, a first insulation film and a SOI layer; a first circuit; a second circuit; and a trench separation element. The SOI substrate further includes a first region and a second region. The first region has the support layer, the first insulation film and the SOI layer, which are stacked in this order, and the second region has only the support layer. The trench separation element penetrates the support layer, the first insulation film and the SOI layer. The trench separation element separates the first region and the second region. The first circuit is disposed in the SOI layer of the first region. The second circuit is disposed in the support layer of the second region.
摘要:
A semiconductor device includes: a SOI substrate including a support layer, a first insulation film and a SOI layer; a first circuit; a second circuit; and a trench separation element. The SOI substrate further includes a first region and a second region. The first region has the support layer, the first insulation film and the SOI layer, which are stacked in this order, and the second region has only the support layer. The trench separation element penetrates the support layer, the first insulation film and the SOI layer. The trench separation element separates the first region and the second region. The first circuit is disposed in the SOI layer of the first region. The second circuit is disposed in the support layer of the second region.