摘要:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
摘要:
Fabrication methods and structures relating to backplanes for back contact solar cells that provide for solar cell substrate reinforcement and electrical interconnects as well as Fabrication methods and structures for forming thin film back contact solar cells are described.
摘要:
A front contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In yet another embodiment, a back contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, base regions, and a front surface field are formed through ion implantation processes.
摘要:
A back contact back junction thin-film solar cell is formed on a thin-film semiconductor solar cell. Preferably the thin film semiconductor material comprises crystalline silicon. Base regions, emitter regions, and front surface field regions are formed through ion implantation and annealing processes.
摘要:
A front contact thin-film solar cell is formed on a thin-film silicon solar cell. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In one embodiment, front contact thin-film solar cell is formed on a thin-film silicon solar cell. Emitter regions, selective emitter regions, base regions, and a back surface field are formed through ion implantation processes.
摘要:
Various laser processing schemes are disclosed for producing various types of hetero-junction emitter and homo-junction emitter solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.
摘要:
A front contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, and a back surface field are formed through ion implantation processes. In yet another embodiment, a back contact thin-film solar cell is formed on a thin-film crystalline silicon substrate. Emitter regions, selective emitter regions, base regions, and a front surface field are formed through ion implantation processes.
摘要:
Various laser processing schemes are disclosed for producing various types of hetero-junction and homo-junction solar cells. The methods include base and emitter contact opening, selective doping, metal ablation, annealing to improve passivation, and selective emitter doping via laser heating of aluminum. Also, laser processing schemes are disclosed that are suitable for selective amorphous silicon ablation and selective doping for hetero-junction solar cells. Laser ablation techniques are disclosed that leave the underlying silicon substantially undamaged. These laser processing techniques may be applied to semiconductor substrates, including crystalline silicon substrates, and further including crystalline silicon substrates which are manufactured either through wire saw wafering methods or via epitaxial deposition processes, or other cleavage techniques such as ion implantation and heating, that are either planar or textured/three-dimensional. These techniques are highly suited to thin crystalline semiconductor, including thin crystalline silicon films.
摘要:
A method for making a crystalline silicon solar cell substrate is provided. A doped dielectric layer is deposited over the backside surface of a crystalline silicon substrate, the doped dielectric layer having a polarity opposite the polarity of the crystalline silicon substrate. Portions of the backside surface of the crystalline substrate are exposed through the doped dielectric layer. An overlayer is deposited over the doped dielectric layer and the exposed portions of the backside surface of the crystalline silicon substrate. Pulsed laser ablation of the overlayer is performed with a flat top laser beam on the silicon substrate to form continuous base openings nested within the exposed portions of the backside surface of the crystalline silicon substrate, the flat top laser beam having a beam intensity profile flatter as compared to a Gaussian beam intensity profile and having a rectangular beam cross section. Doped base regions are formed in the crystalline silicon substrate through the continuous base openings.
摘要:
Methods for laser irradiation aluminum doping for monocrystalline silicon substrates are provided. According to one aspect of the disclosed subject matter, aluminum metal contacts are formed directly on a surface of a monocrystalline silicon substrate. The aluminum metal contact is selectively heated via laser irradiation, thereby causing the aluminum and a portion of the monocrystalline silicon substrate in proximity to the aluminum to reach a temperature sufficient to allow at least a portion of the silicon to dissolve in the aluminum. The aluminum and the portion of the monocrystalline silicon substrate in proximity to the aluminum is allowed to cool, thereby forming an aluminum-rich doped silicon layer on the monocrystalline silicon substrate.