摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent optical element (e.g., a lens or an optical concentrator) to a light emitting device comprising an active region includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the light emitting device together. A block of optical element material may be bonded to the light emitting device and then shaped into an optical element. Bonding a high refractive index optical element to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
A method of bonding a transparent optical element to a light emitting device having a stack of layers including semiconductor layers comprising an active region is provided. The method includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the stack together. In one embodiment, the method also includes disposing a layer of a transparent bonding material between the stack and the optical element. The bonding method can be applied to a premade optical element or to a block of optical element material which is later formed or shaped into an optical element such as a lens or an optical concentrator.
摘要:
A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
摘要:
A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
A semiconductor light emitting heterostructure device is disclosed. The device comprises an n-type GaAs substrate, a first n-type laeyr of AlGaAs adjacent to the substrate, a second p-type light emitting AlGaAs layer adjacent to the first layer, and a third p-type AlGaAs layer suitable for bonding to an aluminum contact. The device starts with an n-type substrate which is more readily available and has a p-side up configuration which is more suitable for bonding to an aluminum contact.
摘要:
A method of forming a photoresist mask on a light emitting device is disclosed. A portion of the light emitting device is coated with photoresist. A portion of the photoresist is exposed by light impinging on the interface of the light emitting device and the photoresist from inside the light emitting device. The photoresist is developed, removing either the exposed photoresist or the unexposed photoresist. In one embodiment, the photoresist mask may be used to form a phosphor coating. After the photoresist is developed to remove the exposed photoresist, a phosphor layer is deposited overlying the light emitting device. The unexposed portion of photoresist is stripped. In some embodiments, the light exposing the photoresist is produced by electrically biasing the light emitting device, or by shining light into the light emitting device through an aperture or by a focussed laser.
摘要:
A concentrically leaded power semiconductor package includes two or more generally concentric conductors. An inner conductor may provide an attachment point for one or more semiconductor devices at an end of the inner conductor and an electrical connection at an opposite end. An outer conductor may be pressed onto the inner conductor and may be separated by an electrical insulator. A semiconductor device, such as a light emitting diode (LED), may be attached to the inner conductor by epoxy gluing or by soldering, and may be attached to the outer conductor by a bonding wire. The package may be cylindrical or a rectangular solid. The package may incorporate additional semiconductor mounting surfaces and more than two conductors.