摘要:
A seed crystal is immersed in a melt containing a flux and a single crystal material in a growth vessel to produce a nitride single crystal on the seed crystal. A difference (TS-TB) of temperatures at a gas-liquid interface of the melt (TS) and at the lowermost part of the melt (TB) is set to 1° C. or larger and 8° C. or lower. Preferably, the substrate of seed crystal is vertically placed.
摘要:
A seed crystal 9 is immersed in a melt 10 containing a flux and a single crystal material in a growth vessel 7 to produce a nitride single crystal 8 on the seed crystal 9. A difference (TS−TB) of temperatures at a gas-liquid interface of the melt (TS) and at the lowermost part of the melt (TB) is set to 1° C. or larger and 8° C. or lower. Preferably, the substrate of seed crystal is vertically placed.
摘要:
A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.
摘要:
A nitride single crystal is produced on a seed crystal substrate 5 in a melt containing a flux and a raw material of the single crystal in a growing vessel 1. The melt 2 in the growing vessel 1 has temperature gradient in a horizontal direction. In growing a nitride single crystal by flux method, adhesion of inferior crystals onto the single crystal is prevented and the film thickness of the single crystal is made constant.
摘要:
The present invention provides a method for producing a semiconductor substrate, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal.
摘要:
A growth apparatus is used having a plurality of crucibles each for containing the solution, a heating element for heating the crucible, and a pressure vessel for containing at least the crucibles and the heating element and for filling an atmosphere comprising at least nitrogen gas. One seed crystal is put in each of the crucibles to grow the nitride single crystal on the seed crystal.
摘要:
A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.
摘要:
In the production of GaN through the flux method, deposition of miscellaneous crystals on the nitrogen-face of a GaN self-standing substrate and waste of raw materials are prevented. Four arrangements of crucibles and a GaN self-standing substrate are exemplified. In FIG. 1A, a nitrogen-face of a self-standing substrate comes into close contact with a sloped flat inner wall of a crucible. In FIG. 1B, a nitrogen-face of a self-standing substrate comes into close contact with a horizontally facing flat inner wall of a crucible, and the substrate is fixed by means of a jig. In FIG. 1C, a jig is provided on a flat bottom of a crucible, and two GaN self-standing substrates are fixed by means of the jig so that the nitrogen-faces of the substrates come into close contact with each other. In FIG. 1D, a jig is provided on a flat bottom of a crucible, and a GaN self-standing substrate is fixed on the jig so that the nitrogen-face of the substrate is covered with the jig. A flux mixture of molten gallium and sodium is charged into each crucible, and a GaN single crystal is grown on a gallium-face under pressurized nitrogen.
摘要:
To provide a semiconductor substrate of high quality suitable for fabricating an electronic device or an optical device. The present invention provides a method for producing a semiconductor substrate for an electronic device or an optical device, the method including reacting nitrogen (N) with gallium (Ga), aluminum (Al), or indium (In), which are group III elements, in a flux mixture containing a plurality of metal elements selected from among alkali metals and alkaline earth metals, to thereby grow a group III nitride based compound semiconductor crystal. The group III nitride based compound semiconductor crystal is grown while the flux mixture and the group III element are mixed under stirring. At least a portion of a base substrate on which the group III nitride based compound semiconductor crystal is grown is formed of a flux-soluble material, and the flux-soluble material is dissolved in the flux mixture, at a temperature near the growth temperature of the group III nitride based compound semiconductor crystal, during the course of growth of the semiconductor crystal or after completion of growth of the semiconductor crystal.
摘要:
A raw material mixture containing an easily oxidizable material is weighed. The raw material mixture is melted and then solidified within a reaction vessel 1 set in a non-oxidizing atmosphere to thereby produce a solidified matter 19. The reaction vessel 1 and the solidified matter 19 are heated in a non-oxidizing atmosphere within a crystal growth apparatus to melt the solidified matter to thereby produce a solution. A single crystal is grown from the solution.