摘要:
A magnetic disk storage device capable of avoiding the occurrence of vibration of magnetic disks and off-track of magnetic heads with respect to the magnetic disks, including an inner shroud enclosing a disk assembly composed of a multiplicity of magnetic disks stacked in superposed relation with spacers being interposed therebetween and formed at its outer peripheral wall with first ports for inserting access arms therethrough and at its top above a spindle supporting the disk assembly with a second port, a cylindrical filter for removing dust from air flowing through the second port of the inner shroud into the interior thereof, and a dust cover enclosing the inner shroud, actuators and filter. The provision of the inner shroud is conductive to prevention of development of turbulent air flow in the vicinity of the magnetic disks. The inner shroud is further formed at its outer peripheral wall with a multiplicity of small apertures for releasing heat generated in the inner shroud to outside, to thereby avoid thermal off-track of the magnetic heads.
摘要:
An actuator for a magnetic disk device causes movement of a magnetic head in the radial direction of a rotating magnetic disk. Although this magnetic head is floated above the magnetic disk by a stream of air induced by the rotation of the magnetic disk at a high speed, an excessively high velocity of the air stream causes excessive vibrations of a soft gimbal resiliently supporting the magnetic head. In the actuator of the present invention, a head arm supporting the magnetic head through the gimbal is formed with a wind-breaking projection preventing direct impingement of the air stream against the gimbal and magnetic head, thereby minimizing vibrations of the gimbal and magnetic head.
摘要:
A substrate processing apparatus can suppress an edge gas from being diffused toward a center region of a substrate. An upper electrode 200 serving as a gas introducing unit configured to supply one kind of gas or different kinds of gases to a center region and an edge region of the substrate includes a center gas inlet section 204 having a multiple number of gas holes 212 for a center gas; and an edge gas inlet section 206 having a multiplicity of gas holes 214 for an edge gas. By providing a gas hole formation plate 230 having gas holes 232 communicating with the gas holes 214 at a bottom surface of the edge gas inlet section 206, a vertical position of edge gas discharging openings can be adjusted.
摘要:
A plasma etching apparatus includes a processing chamber; a holding unit for holding the substrate within the processing chamber; an electrode plate facing the holding unit; a plurality of supply parts arranged at different radial positions with respect to the substrate for supplying processing gas to a space between the holding unit and the electrode plate; a high frequency power supply that supplies high frequency power to the holding unit and/or the electrode plate to convert the processing gas supplied to the space into plasma; an adjustment unit that adjusts a supply condition for each of the supply parts; and a control unit that controls the adjustment unit to vary the supply condition between a position where an effect of diffusion of processing gas on an active species concentration distribution at the substrate is dominant and a position where an effect of flow of the processing gas is dominant.
摘要:
Provided is a chamber cleaning method capable of efficiently removing a CF-based shoulder deposit containing Si and Al deposited on an outer periphery of an ESC. A mixed gas of an O2 gas and a F containing gas is supplied toward an outer periphery 24a of an ESC 24 at a pressure ranging from about 400 mTorr to about 800 mTorr; plasma generated from the mixed gas is irradiated onto the outer periphery 24a of the ESC 24; an O2 single gas as a mask gas is supplied to the top surface of ESC 24 except the outer periphery 24a; and the shoulder deposit 50 adhered to the outer periphery 24a is decomposed and removed while preventing the top surface of ESC 24 except the outer periphery 24a from being exposed to a F radical.
摘要:
A substrate processing method effectively suppresses non-uniformity in deposition degree on a surface of a substrate. The substrate processing method includes depositing a deposit on a sidewall of each opening of a resist pattern, which is formed on an antireflection film on an etching target film of the substrate and is provided with a plurality of openings, before etching the etching target film of the substrate. Plasma is generated in the depositing process by introducing a CHF-based gas into the processing chamber at a flow rate equal to or higher than about 1000 sccm while a pressure in the processing chamber is set to equal to or higher than about 100 mTorr.
摘要:
A plasma processing method for processing a target substrate uses a plasma processing apparatus which includes a vacuum evacuable processing vessel for accommodating the target substrate therein, a first electrode disposed in the processing vessel and connected to a first RF power supply for plasma generation and a second electrode disposed to face the first electrode. The method includes exciting a processing gas containing fluorocarbon in the processing vessel to generate a plasma while applying a negative DC voltage having an absolute value ranging from about 100 V to 1500 V or an RF power of a frequency lower than about 4 MHz to the second electrode. The target layer is etched by the plasma, thus forming recesses on the etching target layer based on the pattern of the resist layer.
摘要:
There is provided a cleaning method for a substrate processing apparatus capable of improving a removing rate of a deposit without increasing a self-bias voltage. The cleaning method includes supplying, to clean the inside of a processing chamber 102 under preset processing conditions, a processing gas including an O2 gas and an inert gas into the processing chamber at a preset flow rate ratio of the processing gas; and generating plasma of the processing gas by applying a high frequency power between a lower electrode 111 and a upper electrode 120. Here, the preset flow rate ratio of the processing gas is set depending on a self-bias voltage of the lower electrode 111 such that a flow rate ratio of the O2 gas is reduced while a flow rate ratio of the Ar gas is increased as an absolute value of the self-bias voltage decreases.
摘要:
A plasma etching method includes disposing a first electrode and a second electrode to face each other; preparing a part in the processing chamber; supporting a substrate; vacuum-evacuating the processing chamber; supplying an etching gas into a processing space between the first electrode and the second electrode; generating a plasma of the etching gas in the processing space by applying a radio wave power to the first electrode or the second electrode; and etching a film to be processed on a surface of the substrate by using the plasma. Further, a DC voltage is applied to the part during the etching process, the part being disposed away from the substrate and being etched by reaction with reactant species in the plasma.
摘要:
An electrode structure capable of adequately increasing an electron density in a processing space at a part facing a circumferential edge portion of a substrate. In a processing chamber of a substrate processing apparatus that performs RIE processing on a wafer, an upper electrode of the electrode structure is disposed to face the wafer placed on a susceptor inside the processing chamber. The upper electrode includes an inner electrode facing a central portion of the wafer and an outer electrode facing the circumferential edge portion of the wafer. The inner and outer electrodes are connected with first and second DC power sources, respectively. The outer electrode has its first secondary electron emission surface extending parallel to the wafer and its second secondary electron emission surface obliquely extending relative to the first secondary electron emission surface.