摘要:
The present invention is directed to a semiconductor device which can achieve high current density and which has a high reliability. In the insulated gate semiconductor device according to the present invention, a plurality of insulating gates are provided, with each two adjacent insulating gates being spaced from each other, the insulating gates being provided on a second semiconductor region of a first conductivity type. A first semiconductor region, of the same or different conductivity type from that of the second semiconductor region, extends from a surface of the second semiconductor region opposed to the surface thereof having the insulating gates thereon. A plurality of third semiconductor regions are provided in the second semiconductor region, between the insulating gates and aligned therewith, and two fourth semiconductor regions are provided extending into each of the third semiconductor regions, aligned with the sides of adjacent insulating gates. Electrodes are respectively provided in contact with the first semiconductor region and in contact with the third and fourth semiconductor regions, the electrode in contact with the third and fourth semiconductor regions contacting such regions in the space between adjacent insulating gates. By utilizing such aligned third and fourth semiconductor regions, an insulated gate semiconductor device which operates at high current densities can be fabricated at high accuracy, and such device will be less influenced by parasitic bipolar transistor effects.
摘要:
A method for fabricating an insulated gate semiconductor device comprises the steps of forming insulated gates on an n.sup.- -layer surface, forming p-well layers in the n.sup.- -layer using the insulated gates as masks, forming phosphosilicate glass layers on the side walls of the insulated gates and diffusing the impurities from the phosphosilicate glass layers into the p-well layers to form n.sup.30 -source layer.
摘要:
A method for fabricating an insulated gate semiconductor device comprises the steps of forming insulated gates on an n.sup.- -layer surface, forming p-well layers in the n.sup.- -layer using the insulated gates as masks, forming phosphosilicate glass layers on the side walls of the insulated gates and diffusing the impurities from the phosphosilicate glass layers into the p-well layers to form n.sup.+ -source layer.
摘要:
The present invention relates to a semiconductor device having an n-type semiconductor region forming one of the main surfaces of a semiconductor substrate, with a plurality of p-type semiconductor regions formed in the n-type semiconductor region. Two exposed n-type semiconductor regions are formed on each of the p-type semiconductor regions, with a main electrode formed on the n-type semiconductor regions and the exposed p-type semiconductor region therebetween. An insulated gate extends from one of the n-type semiconductor regions in one of the p-type semiconductor regions to a closer one of the n-type semiconductor regions in an adjacent p-type semiconductor region. The length of the insulated gate is longer than a distance between adjacent insulated gates.
摘要:
In a module using a high-speed switching element such as an IGBT for a high-speed inverter, a matching condition is established between the switching characteristic of the IGBT and the recovery characteristic of the diode to be connected thereto in an anti-parallel fashion. As a result, the oscillating voltage appearing in the inverter circuit is suppressed to prevent erroneous operation of the inverter system.
摘要:
Disclosed is a composite semiconductor device which comprises: a second and a third semiconductor regions of a second conductivity type formed in a first semiconductor region of a first conductivity type independently of each other and so as to be exposed on one main surface of a semiconductor substrate; a fourth and a fifth semiconductor regions of the first conductivity type formed in the second semiconductor region independently of each other and so as to be exposed on the one main surface of the semiconductor substrate; a first insulated gate electrode formed on the second semiconductor region located between the fifth and first semiconductor regions and exposed on the one main surface; a second insulated gate electrode formed on the first semiconductor region located between the second and third semiconductor regions and exposed on the one main surface; an electrode which shorts the fourth and third semiconductor regions; another electrode which shorts the second and fifth semiconductor regions; and a further electrode provided in the first semiconductor region.
摘要:
In a light-activated semiconductor device wherein a light-activated semiconductor element accommodated in a package is driven by a light signal fed from an external light source into the package through an optical guide, the optical guide comprises a first portion passing through the package and a second portion for optically coupling the first portion and the light-activated element.
摘要:
A lateral insulated gate bipolar transistor comprises a p layer and a p.sup.+ layer provided apart from each other and extending from a surface of an n.sup.- layer into the n.sup.- layer, an n.sup.+ layer provided extending from a surface of the p layer into the p layer, a first main electrode provided in ohmic contact with the n.sup.+ layer and the p layer, a second main electrode provided in ohmic contact with the p.sup.+ layer, and a control electrode provided through an insulating film on the n.sup.+ layer, the p layer and the n.sup.- layer on the side of the first main electrode away from the second main electrode.
摘要:
A method of manufacturing a spark plug includes a joining step of joining a first member and a second member which constitute the spark plug. In the joining step, a first welding electrode in contact with the first member and a second welding electrode which has an elastically deformable intermediate portion and which is in contact with the second member are electrically connected through the first member and the second member, whereby the first member and the second member are joined together by resistance welding.
摘要:
When a movable blade cuts a distal end portion of a ground electrode member and is pulled back along a cut surface formed at a distal end of the ground electrode member, the distal end portion may move in the pull-back direction of the movable blade due to friction generated between the movable blade and the cut surface. This movement could cause deflective deformation of the ground electrode member. In order to restrain such movement, a support part is provided on the movable blade via a spring located near the cut surface. During the pull back step, the support part presses and supports the portion of the cut ground electrode member near the distal end thereof. Therefore, even when friction is generated when the movable blade is pulled back, the ground electrode member does not undergo deflective deformation.