Abstract:
Provided is an organic EL element which has excellent luminous efficiency by improving the cathode. An organic EL element which is configured of a cathode, an anode and one or more organic compound layers provided between the electrodes, and wherein the cathode is formed of a transparent conductive film that is formed on a glass substrate and is configured from an indium oxide compound and an element having a high work function, so that the cathode has a high work function matched to the HOMO of an organic hole transport layer among the organic compound layers. Consequently, holes can be easily injected from the cathode to the organic hole transport layer, and the present invention is therefore suitable for manufacturing an organic EL element having excellent luminous efficiency.
Abstract:
The forming voltage of a resistance change element used in a non-volatile memory and the like is decreased, and repetition characteristics are improved. In an element structure in which a metal oxide film 12 is sandwiched between a lower electrode 11 and an upper electrode 14, an island/particle-like region of amorphous aluminum oxide or aluminum oxycarbide 13 is formed on the metal oxide film 12. Because an oxide deficiency, serving as the nucleus of a filament for implementing an on/off operation of the resistance change element, is formed from the beginning under the island- or particle-like aluminum oxide or the like, the conventional creation of an oxide deficiency by high-voltage application in the initial period of forming can be eliminated. Such a region can be fabricated using a small number of cycles of an ALD process.
Abstract:
The present invention improves the sensitivity and the responsiveness of a dryness/wetness responsive sensor utilizing a galvanic current, allowing for downsizing of the dryness/wetness responsive sensor. Instead of the conventional structure in which an anode electrode and a cathode electrode are stacked with an intervening insulator, the present invention employs a structure in which both electrodes run in juxtaposition with each other on an insulating substrate in the form of, for example, a comb-shaped electrode as shown in the drawing. By utilizing a semiconductor manufacturing process or any other micro/nano-fabrication technology, an inter-electrode distance can be extremely shortened as compared with the conventional sensors, allowing enhancing the sensitivity per unit footprint of the electrodes. Accordingly, a decrease in the size of the dryness/wetness responsive sensor can be easily achieved.
Abstract:
The present invention is to provide a small-sized dryness/wetness responsive sensor that detects a galvanic current with a high sensitivity as a principle of operation. According to one embodiment of the present invention, a dryness/wetness responsive sensor comprises a thin wire made of a first metal and a thin wire made of a second metal, the second metal is different from the first metal, the thin wire of the first metal and the thin wire of the second metal are disposed in juxtaposition with each other on an insulating substrate, and a surface state of a part between the thin wire of the first metal and the thin wire of the second metal is hydrophilic or hydrophobic.
Abstract:
The present invention improves the sensitivity and the responsiveness of a dryness/wetness responsive sensor utilizing a galvanic current, allowing for downsizing of the dryness/wetness responsive sensor. Instead of the conventional structure in which an anode electrode and a cathode electrode are stacked with an intervening insulator, the present invention employs a structure in which both electrodes run in juxtaposition with each other on an insulating substrate in the form of, for example, a comb-shaped electrode as shown in the drawing. By utilizing a semiconductor manufacturing process or any other micro/nano-fabrication technology, an inter-electrode distance can be extremely shortened as compared with the conventional sensors, allowing enhancing the sensitivity per unit footprint of the electrodes. Accordingly, a decrease in the size of the dryness/wetness responsive sensor can be easily achieved.
Abstract:
The present invention provides a thin-film transistor in which transistor characteristics such as drain current and threshold voltage are improved, and a method of manufacturing the same. The present invention provides a thin-film transistor provided with a source electrode (108), a drain electrode (109), a semiconductor layer (105), a gate electrode (103), and an insulating layer (104); wherein the semiconductor layer (105) contains a composite metal oxide obtained by adding to a first metal oxide an oxide having an oxygen dissociation energy that is at least 200 kJ/mol greater than the oxygen dissociation energy of the first metal oxide, whereby the amount of oxygen vacancy is controlled; and the insulating layer (104) is provided with an SiO2 layer, a high-permittivity first layer, and a high-permittivity second layer, whereby the dipoles generated at the boundary between the SiO2 layer and the high-permittivity layers are used to control the threshold voltage.
Abstract:
To provide a method for reducing a thickness of an interfacial layer, which contains: (a) forming a film of an oxide of a first metal on a semiconductor layer via an oxide film of a semiconductor serving as an interfacial layer; and (b) forming a film of an oxide of a second metal on the film of the oxide of the first metal, where the second metal has higher valency than that of the first metal.