Abstract:
A joined body includes: a first plate; a second plate of a same type as or a different type from a type of the first plate; an amorphous layer existing at a joint interface between the first plate and the second plate; a first plate alteration layer existing on a side of the first plate in contact with the amorphous layer; and a second plate alteration layer existing on a side of the second plate in contact with the amorphous layer.
Abstract:
An atomic beam source 10 includes a tubular cathode 20 that includes an emission portion 30 that includes an emission port 32 through which an atomic beam can be emitted, a rod-shaped first anode 40 disposed inside the cathode 20, and a rod-shaped second anode 50 disposed inside the cathode 20 and spaced from the first anode 40. At least one selected from the group consisting of a shape of the cathode, a shape of the first anode, a shape of the second anode, and a positional relationship between the cathode, the first anode, and the second anode is predetermined so that emission of sputter particles resulting from collision of cations, which have been generated by plasma between the first anode and the second anode, with at least one selected from the cathode, the first anode, and the second anode is reduced.
Abstract:
Disclosed is a die for forming a honeycomb structure, including: a second plate-shaped portion that has a second bonded surface, where a back hole for introducing a forming raw material is formed; and a first plate-shaped portion that has a first bonded surface, where a slit communicating with the back hole to form a forming raw material is formed, and a cavity communicating with the back hole and the slit is formed in the first bonded surface side, wherein the first plate-shaped portion is arranged on the second plate-shaped portion, an open end of the cavity on the first bonded surface has a diameter different from that of an open end of the back hole on the second bonded surface, and the open end of the cavity on the first bonded surface is arranged inside the open end of the back hole on the second bonded surface.
Abstract:
A member for semiconductor manufacturing apparatus has a ceramic plate, a porous plug, an insulating lid, and pores. The ceramic plate has a wafer placement surface as an upper surface. The porous plug is disposed in a plug insertion hole penetrating the ceramic plate in an up-down direction, and allows a gas to flow. The insulating lid is provided in contact with an upper surface of the porous plug, and exposed to the wafer placement surface. A plurality of pores are provided in the insulating lid, and penetrate the insulating lid in an up-down direction.
Abstract:
A sensor element includes an element body and a porous protective layer arranged to cover a part of a surface of the element body. The protective layer includes an inlet protective layer arranged to cover a gas inlet formed in the surface of the element body, and at least a part of a face included in the surface of the element body, the face on which the gas inlet is opens, and an arithmetic average roughness Rap of an inner peripheral surface of an internal space of the inlet protective layer satisfies at least one of conditions below: the arithmetic average roughness Rap is 8 μm or more, and the arithmetic average roughness Rap is higher than an arithmetic average roughness Rac of a bonding surface of the protective layer, the bonding surface at which the protective layer is bonded to the element body.
Abstract:
A sensor element includes an element body having a measurement-object gas flow section formed therein, and a porous protective layer arranged to cover first to fifth surfaces of the element body. When an external wall that is the thinnest of parts of an external wall which constitute the element body and extend from the measurement-object gas flow section to the first to fifth surfaces is defined as a thinnest external wall and a surface corresponding to the thinnest external wall is defined as a closest surface, a part of the protective layer which covers the closest surface overlaps the entirety of the thinnest external wall when viewed in a direction perpendicular to the closest surface, and has one or more internal spaces formed therein which overlaps 80% or more of the thinnest external wall when viewed in the direction perpendicular to the closest surface.
Abstract:
A production method for a composite substrate according to the present invention comprises (a) a step of mirror-polishing a piezoelectric-substrate side of a laminated substrate formed by bonding a piezoelectric substrate and a support substrate; (b) a step of performing machining using an ion beam or a neutral atom beam so that a thickness of an outer peripheral portion of the piezoelectric substrate is larger than a thickness of an inner peripheral portion and a difference between a largest thickness and a smallest thickness of the inner peripheral portion of the piezoelectric substrate is 100 nm or less over an entire surface; and (c) a step of flattening the entire surface of the piezoelectric substrate to remove at least a part of an altered layer formed by the machining using the ion beam or the neutral atom beam in the step (b).
Abstract:
A composite substrate according to the present invention includes a support substrate having a diameter of 2 inches or more, and a piezoelectric substrate having a thickness of 20 μm or less and bonded to the support substrate to transmit light. The piezoelectric substrate has a thickness distribution shaped like a fringe. A waveform having an amplitude within a range of 5 to 100 nm in a thickness direction and a pitch within a range of 0.5 to 20 mm in a width direction appears in the thickness distribution of the piezoelectric substrate in a cross section of the composite substrate taken along a line orthogonal to the fringe, and the pitch of the waveform correlates with a width of the fringe. In the piezoelectric substrate, the fringe may include either parallel fringes or spiral or concentric fringes.
Abstract:
A grinding apparatus 10 includes a controller 11 for controlling the entire apparatus, a grinding motor 14, a base metal 15 to be rotated by the grinding motor 14, and a grinding wheel 16 fixed to the base metal 15. In a grinding step, the grinding apparatus 10 is used and a surface 19 of an object to be polished 18 is ground with the grinding wheel 16 rotating at a peripheral speed of 10 m/s or less. In the grinding step, the surface 19 of the object to be polished 18 is preferably ground with the grinding wheel 16 rotating at a peripheral speed of 0.5 m/s or more. In the grinding step, a surface of alumina, sapphire, silicon carbide, or gallium nitride is ground as the object to be polished.
Abstract:
A member for semiconductor manufacturing apparatus includes: a ceramic plate having a wafer placement surface on its upper surface; and a porous plug that is disposed in a plug insertion hole penetrating the ceramic plate in a up-down direction, and allows a gas to flow, wherein the porous plug has a first porous member exposed to the wafer placement surface, and a second porous member having an upper surface covered by the first porous member, the first porous member is higher in purity and smaller in thickness than the second porous member, and the second porous member is higher in porosity than the first porous member.