Abstract:
A stacking die comprises a stacked multiple stacking plates and a side plate(s) which fixes the multiple stacking plates in a stacked state, wherein at least one or more processing object(s) is retained in a space(s) formed between the multiple stacking plates. Further, surfaces where the stacking plates and the side plate(s) abut each other are preferably tapered so that they form tapered shapes in a direction opposite to the approach direction of the side plate(s).
Abstract:
A joining sheet includes a solder layer which contains solder particles, a thermoplastic resin, and an active agent capable of activating the solder particles and a thermosetting resin-containing layer which is laminated on at least one surface in a thickness direction of the solder layer and contains a thermosetting resin.
Abstract:
A method comprises: charging a rare-earth magnet-forming material comprising magnet material particles into a mold, in a state in which an easy magnetization axis of each of the magnet material particles is oriented in one plane; sintering the rare-earth magnet-forming material charged in the mold by heating the rare-earth magnet-forming material to a sintering temperature while applying a given magnitude of pressing force to the rare-earth magnet-forming material, to thereby form a sintered body in which the magnet material particles are integrally sintered; and then subjecting the sintered body to high-temperature heat treatment, under a pressure lower than the pressing force during the sintering and under a maximum achieving temperature which ranges from greater than 900° C. to 1100° C., and whose difference from a maximum achieving temperature during the pressure sintering is within 250° C.
Abstract:
Raw material magnet is milled to magnet powder, and the magnet powder thus milled is mixed with a binder to form a compound 12. Then, the compound 12 thus formed is molded to a green sheet 14 having a sheet shape. Thereafter, a magnetic field orientation is carried out by applying a magnetic field to the green sheet 14 thus molded, and then, the green sheet 14 having been subjected to the magnetic field orientation is shaped to a product shape by deforming thereof. Thereafter, the permanent magnet 1 is produced by sintering thereof. The permanent magnet 1 has a ring shape, and is constituted such that an axis of easy magnetization may be orientated at a slant so as to converge in a direction along a converging axis P which is set to a radius direction as well as to a center direction of the ring shape.
Abstract:
A soft magnetic resin composition contains flat soft magnetic particles and a resin component, and the soft magnetic particles have a tap density of 1.1 g/cm3 or less.
Abstract translation:软磁性树脂组合物含有平坦的软磁性粒子和树脂成分,软磁性体的振实密度为1.1g / cm 3以下。
Abstract:
Provided are: a sintered body that forms a rare-earth magnet and is configured in a manner such that the divergence between the orientation angles of the easy axes of magnetization of magnet material particles and the orientation axis angle of the magnet material particles is kept within a prescribed range in an arbitrary micro-section of a magnet cross-section; and a rare-earth sintered magnet. This sintered body for forming a rare-earth magnet has two or more different regions exhibiting an orientation axis angle of at least 20°, given that the orientation axis angle is defined as the highest-frequency orientation angle among the orientation angles of the easy magnetization axes, relative to a pre-set reference line, of a plurality of magnet material particles in a rectangular section at an arbitrary position in a plane including the thickness direction and the widthwise direction.
Abstract:
Provided are: a method for manufacturing a sintered body as a base of a sintered magnet and a method for manufacturing a permanent magnet. Specifically, a magnet raw material is pulverized into magnet powder, the magnet powder pulverized and a binder are mixed, thereby to form a compound. The, a formed body, obtained by forming the compound formed, is sintered by heating up the same to a firing temperature in a pressed state at a predetermined heat-up rate, and by keeping the same at the firing temperature. In the sintering step, the pressure value for pressing the formed body is set to: less than 3 MPa from the start of heating up of the formed body to a predetermined timing during heating up of the formed body; and 3 MPa or more after the timing.
Abstract:
Provided are: a sintered body that forms a rare-earth magnet and is configured in a manner such that the divergence between the orientation angles of the easy axes of magnetization of magnet material particles and the orientation axis angle of the magnet material particles is kept within a prescribed range in an arbitrary micro-section of a magnet cross-section; and a rare-earth sintered magnet. This sintered body for forming a rare-earth magnet has two or more different regions exhibiting an orientation axis angle of at least 20°, given that the orientation axis angle is defined as the highest-frequency orientation angle among the orientation angles of the easy magnetization axes, relative to a pre-set reference line, of a plurality of magnet material particles in a rectangular section at an arbitrary position in a plane including the thickness direction and the widthwise direction.
Abstract:
The communication module includes a housing, an element disposed in the housing and generates electric power by a wireless system by induced electricity, a communication circuit that operates based on electric power generated by the element, and a sheet member disposed between the housing and the element and having thermal conductivity and electrical insulation.
Abstract:
A soft magnetic resin composition contains soft magnetic particles shaped flat, a resin component, and polyether phosphate ester. The soft magnetic particles content is 60% by volume or more and the polyether phosphate ester content relative to 100 parts by mass of the soft magnetic particles is 0.1 to 5 parts by mass.