Abstract:
An apparatus and method, the apparatus including a sensor array including a plurality of first sensors configured to detect a first attribute; at least one second sensor configured to detect a second attribute; wherein the at least one second sensor is configured such that, in response to detecting a trigger input including the second attribute the second sensor enables a first portion of the sensor array to be powered on while a second portion of the sensor array remains powered off.
Abstract:
An apparatus comprising: a humidity-dependent electrical energy source configured to provide electrical energy when an environment occupied by the humidity-dependent electrical energy source becomes humid; and an electrically activated visual indicator coupled to receive provided electrical energy from the humidity-dependent electrical energy source and configured to provide a visual indication that the environment occupied by the humidity-dependent electrical energy source has become humid.
Abstract:
An apparatus, method and computer program where the apparatus comprises: a plurality of sensors (3, 5) configured to detect a physiological parameter: wherein at least one first (5) sensor is configured to have a first sensitivity to the physiological parameter and at least one second sensor (3) is configured to have a second sensitivity to the physiological parameter; such that a parameter profile, comprising a plurality of measurements of the physiological parameter at different is provided by the apparatus.
Abstract:
An apparatus and method wherein the apparatus comprises: a sensing material configured to produce a non-random distribution of free charges in response to a parameter; an electric field sensor; a first conductive electrode comprising a first area over-lapping the sensing material; an insulator provided between the first conductive electrode and the sensing material; a second electrode comprising a second area adjacent the electric field sensor; and a conductive interconnection between the first conductive electrode and the second conductive electrode.
Abstract:
An apparatus for use in determining the relative vapour pressure of a fluid in an environment in which the apparatus is located, the apparatus comprising a first layer (512) configured to enable a flow of charge carriers from a source electrode (505) to a drain electrode (506), a second layer (513) configured to control the conductance of the first layer (512) using an electric field formed between the first (512) and second layers (513) and a third layer (514) positioned between the first and second layers to prevent a flow of charge carriers therebetween to enable formation of the electric field, wherein the second layer (513) is configured to exhibit a charge distribution on interaction with the fluid, the charge distribution giving rise to the electric field between the first and second (513) layers, and wherein the second layer (513) is configured such that the charge distribution and electric field strength are dependent upon the relative vapour pressure of the fluid in the environment (516), thereby allowing the relative vapour pressure to be derived from a measurement of the conductance of the first layer (512).
Abstract:
An apparatus comprising a channel member(401), first and second electrodes (403, 404) configured to enable a flow of electrical current from the first electrode through the channel member to the second electrode, and a supporting substrate (402) configured to support the channel member and the first and second electrodes, wherein the channel member is separated from the supporting substrate by a nanomembrane (411) configured to facilitate the flow of electrical current through the channel member by inhibiting interactions between the channel member and supporting substrate. Possibly, a conductive shield layer (412) is present between the substrate and the nanomembrane, which may be a nanomembrane as well. The apparatus may also include a gate electrode (406) and a gate dielectric (407), the latter possibly being a nanomembrane as well. The apparatus may be configured to sense analyte species (513) as shown in FIG. 5
Abstract:
An apparatus comprising: one or more cells, each cell comprising: a proton conductor region configured to conduct proton charge carriers; a electron conductor region configured to conduct electrons; a first electrode associated with one of the proton conductor region and the electron conductor region; and a second electrode associated with the other of the proton conductor region and the electron conductor region; a removable barrier layer that is impermeable to water vapor extending over and protecting the one or more cells from water vapor; and a buffer layer that is permeable to water vapor between the one or more cells and the barrier layer.
Abstract:
An apparatus comprising: a first layer (512) configured to enable a flow of charge carriers from a source electrode (505) to a drain electrode (506); a second layer (513) configured to generate a voltage in response to a physical stimulus, the second layer (513) positioned so that the generated voltage can affect the conductance of the first layer (512); and a third layer (514) positioned between the first (512) and second (513) layers to prevent a flow of charge carriers therebetween. The third layer (514) comprises a material configured to form electric double-layers (516, 517) at the interfaces with the first (512) and second (513) layers in response to the generated voltage. The formation of the electric double-layers (516, 517) enhances the effect of the generated voltage on the conductance of the first layer (512) such that determination of the conductance of the first layer (512) can be used to allow the magnitude of the physical stimulus to be derived.
Abstract:
An apparatus comprising a plurality of first elongate electrodes (101) separated from a plurality of second transversely oriented elongate electrodes (102) by an electrolyte (103), the plurality of transversely oriented first (101) and second (102) electrodes forming an array of respective electrochemical sensor nodes at the spaced crossings thereof, wherein the first electrodes (101) are configured such that the interaction of an analyte with the first electrode (101) at a sensor node affects an electrical property of the sensor node, and wherein the apparatus comprises respective terminals connected to each electrode (101, 102) for electrical connection to a measurement circuit to enable determination of the presence and/or amount of analyte at a particular sensor node based on a measurement of the electrical property of that sensor node.