Abstract:
An apparatus and method, the apparatus comprising: at least one electrode configured to provide an electrical connection to a channel of two dimensional material wherein the electrode comprises a conductive layer and plurality of nanostructures wherein at least some of the nanostructures comprise a conductive core and a coating of two dimensional material.
Abstract:
A method and apparatus, the method comprising: forming a layer of two dimensional material (23), in particular graphene, on a first release layer; forming, possibly a (gate) insulating layer (35), and at least two, preferably three, electrodes (25); forming a second release layer overlaying at least a portion of the layer of two dimensional material; providing a mouldable polymer (24, 26, 28) overlaying the at least two electrodes and the second release layer; and removing the first and second release layers to provide a cavity (29) between the mouldable polymer (26) and the layer of two dimensional material (23).
Abstract:
The disclosed device for photodetection includes a first layer of a semiconducting material, a second layer of a two dimensional material, wherein the first and second layers are configured to form an electrical junction, the electrical junction having a potential energy barrier, and a third layer of a material configured to generate one or more excitons upon absorption of incident electromagnetic radiation. Charge separation from the one or more excitons generated in the third layer affects the Fermi energy of the second layer, leading to a change of the potential energy barrier height of the electrical junction. Such a photodetection device has a high sensitivity to the incident electromagnetic radiation. An array of such devices can be applied as an imaging device.
Abstract:
An apparatus (517) comprising first and second plasmonic nanoparticles (502a, 502b) connected to one another by a deformable member (518), the first and second plasmonic nanoparticles each configured to exhibit a respective plasmon resonance when exposed to incident electromagnetic radiation (203), wherein, in a first configuration, the first and second plasmonic nanoparticles are in sufficient proximity to one another that their respective plasmon resonances can interact to produce a resulting plasmon resonance, and wherein mechanical deformation of the deformable member causes a variation in the relative position of the plasmonic nanoparticles to a second configuration to produce a detectable change in the resulting plasmon resonance of the first configuration which can be used to determine said mechanical deformation.
Abstract:
An apparatus and method wherein the apparatus comprises: a graphene field effect transistor comprising quantum dots (7) coupled to a graphene channel (5); wherein the graphene field effect transistor is configured to be illuminated by a pulse of electromagnetic radiation (9) and configured to be exposed to a sample (11) such that an output provided by the graphene field effect transistor, in response to the pulse of electromagnetic radiation, is dependent upon at least one analyte within the sample.
Abstract:
A single device for emitting and detecting photons. The device comprises a semiconductive layer (3), active material (5), further dielectric layer (17) and overlying electrode (25). In a first mode of operation an electrical field is applied between the semiconductive layer (3) and the overlying electrode (25). This enables photons to be emitted from the active material (5). In a second mode of operation, the semiconductive layer (3) constitutes a channel of a field effect transistor (23). The field effect transistor further comprises source electrode (11), drain electrode (15), gate electrode (13) and dielectric layer (19). Photons absorbed by the active material (5) causes charge to be transferred to the semiconductive layer (3), thereby changing the channel resistance. A plurality of such devices can be arranged in a configurable array.
Abstract:
An apparatus, method and computer program where the apparatus comprises: a plurality of sensors (3, 5) configured to detect a physiological parameter: wherein at least one first (5) sensor is configured to have a first sensitivity to the physiological parameter and at least one second sensor (3) is configured to have a second sensitivity to the physiological parameter; such that a parameter profile, comprising a plurality of measurements of the physiological parameter at different is provided by the apparatus.
Abstract:
An apparatus and method of forming an apparatus, the apparatus comprising: a graphene field effect transistor where the graphene field effect transistor comprises a graphene channel and quantum dots provided overlaying the graphene channel, wherein the quantum dots comprise a first layer comprising quantum dots connected to a first ligand and a second layer comprising quantum dots connected to a second ligand, and wherein the first ligand is configured to cause the first layer to have a first refractive index and the second ligand is configured to cause the second layer to have a second refractive index wherein the second refractive index is different to the first refractive index.
Abstract:
A photodetector (400) has a two dimensional conductive channel (302, 408) with source and drain electrodes (404) configured to enable a flow of electrical current through the two dimensional conductive channel (302, 408); and a quantum dot layer (304, 406) overlying the two dimensional conductive channel (302, 408), the quantum dot layer (304, 406) configured to generate charge on exposure to incident electromagnetic radiation (310), the generated charge producing an electric field which causes a change in electrical current passing through the underlying two dimensional conductive channel (302, 408), the change in electrical current being indicative of one or more of the presence and magnitude of the incident electromagnetic radiation (310); wherein the quantum dot layer (304, 406) is configured to have an incident electromagnetic radiation surface (312) which has a texturing comprising undulations in the surface to provide a surface roughness with an average peak amplitude (308) of the order of between 10 nm and 300 nm. The surface texture increases the amount of electromagnetic radiation absorbed in the quantum dot layer (304, 406) in comparison to a photodetector having a flat (non-textured) incident electromagnetic radiation surface.
Abstract:
An apparatus comprising: a first layer (512) configured to enable a flow of charge carriers from a source electrode (505) to a drain electrode (506); a second layer (513) configured to generate a voltage in response to a physical stimulus, the second layer (513) positioned so that the generated voltage can affect the conductance of the first layer (512); and a third layer (514) positioned between the first (512) and second (513) layers to prevent a flow of charge carriers therebetween. The third layer (514) comprises a material configured to form electric double-layers (516, 517) at the interfaces with the first (512) and second (513) layers in response to the generated voltage. The formation of the electric double-layers (516, 517) enhances the effect of the generated voltage on the conductance of the first layer (512) such that determination of the conductance of the first layer (512) can be used to allow the magnitude of the physical stimulus to be derived.