摘要:
A fabrication method for microstructures with high aspect ratios uses a CMOS process to form a desired microstructure on a silicon substrate. The steps of forming a contact plug and a via plug of the process are used to form etching channels in insulation layers, polysilicon layers and metal layers, penetrating to the silicon substrate. An etching process is then performed through the etching channel to form the desired microstructure with high aspect ratio.
摘要:
A fabrication method for microstructures with high aspect ratios uses a CMOS process to form a desired microstructure on a silicon substrate. The steps of forming a contact plug and a via plug of the process are used to form etching channels in insulation layers, polysilicon layers and metal layers, penetrating to the silicon substrate. An etching process is then performed through the etching channel to form the desired microstructure with high aspect ratio.
摘要:
Test structure and method of step coverage for optical waveguide production are disclosed. It combines the steps of producing the optical waveguide and the testing structure by forming the optical waveguide components on the chip and the test structure in the surrounding areas, so the optical waveguide and the test structure have the same upper covering layer. Etching solution is used for the etch testing of the test structure, and the step coverage of the upper covering layer for the optical waveguide is extrapolated by the etching result.
摘要:
A method for forming amorphous silicon films with low defect density on single crystal silicon substrates and structures formed. The method is carried out by first providing a single crystal silicon substrate, then depositing a buffer layer by a material such as silicon oxide, silicon nitride, silicon carbide or a metal on top of the single crystal silicon substrate. An amorphous silicon film of substantial thickness, i.e. of thicker than 1 &mgr;m, is then deposited on top of the buffer layer achieving a smooth top surface.
摘要:
The present disclosure relates to a touch technology, and more particularly to a touch device and a fabrication method thereof. The touch device comprises a sensing area and a peripheral area. The touch device further comprises a sensing electrode layer, a shading layer, a signal transmission line layer, and a conductive layer. The sensing electrode layer extends from the sensing area to the peripheral area. The shading layer is disposed on the peripheral area to overlay the sensing electrode layer and has a through hole to expose a portion of the sensing electrode layer. The signal transmission line layer is disposed on the shading layer and does not cover the through hole. The conductive layer fills the through hole and electrically connects the sensing electrode layer. In addition, a fabrication method of a touch device is also provided.
摘要:
An electric arc ion plating apparatus to coat a metal material on an object includes: (a) an vacuum chamber; (b) an electric arc bombardment chamber in the vacuum chamber, comprising an anode, a cathode target, and an arc triggering electrode to generate metal particles when a voltage is applied on the anode and the cathode, and on the arc triggering electrode; and (c) a magnetic coil having a longitudinal axis. The magnetic coil emanates from the electric arc bombardment chamber and encloses at least a part of the electric bombardment chamber. The magnetic coil contains a constant-diameter section enclosing and immediately emanating from the electric arc bombardment chamber to guide the metal particles away from the cathode and toward the object, and a varying-diameter section away from the electric arc bombardment chamber to provide optimum distribution of the metal particles before they reach the object surface. The varying-diameter section can be a diverging section for effectively coating relatively large objects, or a converging section for efficiently coating a relatively small object.
摘要:
The present disclosure provides a method for manufacturing a touch panel, wherein the method comprises: forming a touch sensing layer on a visible region and a non-visible region of a cover substrate, wherein the non-visible region is located at periphery of the visible region forming a first opaque insulating layer on the touch sensing layer in the non-visible region; forming a wiring layer on the first opaque insulating layer: and forming a conductive layer to electrically connect the wiring layer and the touch sensing layer. Moreover, the present disclosure also provides a touch panel. Accordingly, the touch sensing accuracy is maintained, and the production rate is improved.
摘要:
A touch panel and a method of manufacturing the same are provided. The touch panel comprises: a cover substrate comprising a visible area and a non-visible area, wherein the non-visible area is located in a peripheral area of the visible area; an electrode layer formed on the visible area and the non-visible area of the cover substrate; a conductive masking layer formed on the non-visible area and disposed on a part of the electrode layer that is located on the non-visible area; and a plurality of connecting wires formed on the conductive masking layer and electrically connected to the electrode layer through uniaxial conduction of the conductive masking layer. The present disclosure comprises a method of manufacturing the touch panel. Accordingly, product yield is increased and touch sensing precision is maintained.
摘要:
The embodiments of the present disclosure provide a touch device having a sensing area and a peripheral area around the peripheral area. The touch device comprises a sensing electrode layer, a shading layer, and a signal transmission line, wherein the shading layer is disposed on the peripheral area and the sensing electrode layer. The shading layer has a hollow part and wholly overlays the peripheral area. The signal transmission line is disposed on the shading layer and filled in the hollow part. The signal transmission line is electrically connected to the sensing electrode layer through the shading layer beneath the hollow part. In addition, a fabrication method of the touch device is also provided.
摘要:
The invention discloses a microelectroforming mold using a preformed metal as the substrate and its fabrication method. Using a preformed metal as the substrate can avoid deformation of the microelectroforming mold due to residual stress in the electroforming metal. The fabrication method disclosed herein includes the steps of: forming a layer of bonding material on a surface of the preformed metal substrate after machining; forming a high aspect ratio photoresist microstructure on surfaces of the metal substrate and the bonding material; putting an electroforming material into the gaps of the photoresist microstructure to form an electroforming metal microstructure; and using a thermal process to bond the metal substrate and the metal micro structure by the bonding material and simultaneously bum off the photoresist microstructure to form a micro-electroforming mold. The invention shortens the electroforming time to be one third of the prior art, elongating the number of times the micro-electroforming mold can be used by a factor of more than three.