摘要:
A method for forming amorphous silicon films with low defect density on single crystal silicon substrates and structures formed. The method is carried out by first providing a single crystal silicon substrate, then depositing a buffer layer by a material such as silicon oxide, silicon nitride, silicon carbide or a metal on top of the single crystal silicon substrate. An amorphous silicon film of substantial thickness, i.e. of thicker than 1 &mgr;m, is then deposited on top of the buffer layer achieving a smooth top surface.
摘要:
A fabrication method for microstructures with high aspect ratios uses a CMOS process to form a desired microstructure on a silicon substrate. The steps of forming a contact plug and a via plug of the process are used to form etching channels in insulation layers, polysilicon layers and metal layers, penetrating to the silicon substrate. An etching process is then performed through the etching channel to form the desired microstructure with high aspect ratio.
摘要:
A fabrication method for microstructures with high aspect ratios uses a CMOS process to form a desired microstructure on a silicon substrate. The steps of forming a contact plug and a via plug of the process are used to form etching channels in insulation layers, polysilicon layers and metal layers, penetrating to the silicon substrate. An etching process is then performed through the etching channel to form the desired microstructure with high aspect ratio.
摘要:
Test structure and method of step coverage for optical waveguide production are disclosed. It combines the steps of producing the optical waveguide and the testing structure by forming the optical waveguide components on the chip and the test structure in the surrounding areas, so the optical waveguide and the test structure have the same upper covering layer. Etching solution is used for the etch testing of the test structure, and the step coverage of the upper covering layer for the optical waveguide is extrapolated by the etching result.
摘要:
A system and method for conductive pillars is provided. An embodiment comprises a conductive pillar having trenches located around its outer edge. The trenches are used to channel conductive material such as solder when a conductive bump is formed onto the conductive pillar. The conductive pillar may then be electrically connected to another contact through the conductive material.
摘要:
A work piece includes a copper bump having a top surface and sidewalls. A protection layer is formed on the sidewalls, and not on the top surface, of the copper bump. The protection layer includes a compound of copper and a polymer, and is a dielectric layer.
摘要:
A device includes an interposer including a substrate having a top surface and a bottom surface. A plurality of through-substrate vias (TSVs) penetrates through the substrate. The plurality of TSVs includes a first TSV having a first length and a first horizontal dimension, and a second TSV having a second length different from the first length, and a second horizontal dimension different from the first horizontal dimension. An interconnect structure is formed overlying the top surface of the substrate and electrically coupled to the plurality of TSVs.
摘要:
A conductive bump structure of a semiconductor device comprises a substrate comprising a major surface and conductive bumps distributed over the major surface of the substrate. Each of a first subset of the conductive bumps comprises a regular body, and each of a second subset of the conductive bumps comprises a ring-shaped body.
摘要:
A package structure includes a first substrate bonded to a second substrate by Connecting metal pillars on the first substrate to connectors on the second substrate. A first metal pillar is formed overlying and electrically connected to a metal pad on a first region of the first substrate, and a second metal pillar is formed overlying a passivation layer in a second region of the first substrate. A first solder joint region is formed between metal pillar and the first connector, and a second solder joint region is formed between the second metal pillar and the second connector. The thickness of the first metal pillar is greater than the thickness of the second metal pillar.
摘要:
A surface metal wiring structure for a substrate includes one or more functional μbumps formed of a first metal and an electrical test pad formed of a second metal for receiving an electrical test probe and electrically connected to the one or more functional μbumps. The surface metal wiring structure also includes a plurality of sacrificial μbumps formed of the first metal that are electrically connected to the electrical test pads, where the sacrificial μbumps are positioned closer to the electrical test pad than the one or more functional μbumps.