摘要:
In accordance with the present invention, there are provided methods to render cells non-adhesive and/or non-immunogenic with respect to macromolecules typically encountered in culture media or in physiological media. The invention method comprises contacting cells with an effective amount of a composition comprising a polycationic species having water-soluble polymer chains grafted thereon.
摘要:
Crosslinked biocompatible compositions comprising an ionically crosslinked component and a covalently crosslinked component for encapsulating biologics are disclosed. In accordance with the present invention, also disclosed are crosslinkable biocompatible mixtures comprising an ionically crosslinkable component and a covalently crosslinkable component. Methods for encapsulating biologics with the crosslinked and cross-linkable biocompatible compositions are provided. Also, retrievable macrocapsules for encapsulating microcapsules or biologics are disclosed.
摘要:
In accordance with the present invention, there are provided methods to render cells non-adhesive and/or non-immunogenic with respect to macromolecules typically encountered in culture media or in physiological media.
摘要:
Crosslinked biocompatible compositions comprising an ionically crosslinked component and a covalently crosslinked component for encapsulating biologics are disclosed. In accordance with the present invention, also disclosed are crosslinkable biocompatible mixtures comprising an ionically crosslinkable component and a covalently crosslinkable component. Methods for encapsulating biologics with the crosslinked and crosslinkable biocompatible compositions are provided. Also, retrievable macrocapsules for encapsulating microcapsules or biologics are disclosed.
摘要:
In accordance with the present invention, there are provided compositions useful for the in vivo delivery of a biologic, wherein the biologic is associated with a polymeric shell formulated from a biocompatible material. The biologic can be associated with the polymeric shell itself, and/or the biologic, optionally suspended/dispersed in a biocompatible dispersing agent, can be encased by the polymeric shell. In another aspect, the biologic associated with polymeric shell is administered to a subject, optionally dispersed in a suitable biocompatible liquid.
摘要:
In accordance with the present invention compositions comprising imaging agent(s) contained within polymeric shells are provided. Invention compositions are useful, for example, as contrast agents for magnetic resonance imaging (MRI), ultrasonography, and X-ray computer tomography. The polymeric shell diameter is typically approximately 2 microns in diameter. Consequently, these materials have organ specificity due to rapid scavenging by the reticuloendothial system (RES) or the mononuclear phagocyte (MNP) system upon intravenous injection. Furthermore, polymeric shells of the invention can be used to measure and monitor local oxygen and temperature. Exemplary contrast agents contemplated for use in the practice of the present invention include fluorinated compounds. Fluorinated compounds in general are hydrophobic and as such have limited water solubility. The invention method permits preparation of such compounds in a biocompatible form suitable for ready delivery.
摘要:
In accordance with the present invention, there are provided compositions useful for the in vivo delivery of a biologic, wherein the biologic is associated with a polymeric shell formulated from a biocompatible material. The biologic can be associated with the polymeric shell itself, and/or the biologic, optionally suspended/dispersed in a biocompatible dispersing agent, can be encased by the polymeric shell. In another aspect, the biologic associated with polymeric shell is administered to a subject, optionally dispersed in a suitable biocompatible liquid.
摘要:
The present invention relates to a new form of biocompatible materials (e.g., lipids, polycations, polysaccharides) which are capable of undergoing free radical polymerization, e.g., by using certain sources of light; methods of modifying certain synthetic and naturally occurring biocompatible materials to make polymerizable microcapsules containing biological material coated with said polymerizable materials, composites of said polymerizable materials, methods of making microcapsules and encapsulating biological materials therein, and apparatus for making microcapsules containing biological cells (particularly islets of Langerhans) coated with polymerizable alginate or with a composite thereof (e.g., alginate and PEG). The present invention also relates to drug delivery systems relating to the foregoing, as well as bioadhesives and wound dressings made utilizing the foregoing technology.
摘要:
The present invention relates to a new form of biocompatible materials (e.g., lipids, polycations, polysaccharides) which are capable of undergoing free radical polymerization, e.g., by using certain sources of light; methods of modifying certain synthetic and naturally occurring biocompatible materials to make polymerizable microcapsules containing biological material coated with said polymerizable materials, composites of said polymerizable materials, methods of making microcapsules and encapsulating biological materials therein, and apparatus for making microcapsules containing biological cells (particularly islets of Langerhans) coated with polymerizable alginate or with a composite thereof (e.g., alginate and PEG). The present invention also relates to drug delivery systems relating to the foregoing, as well as bioadhesives and wound dressings made utilizing the foregoing technology.
摘要:
In accordance with the present invention, compositions comprising imaging agent(s) contained within polymeric shells are provided. Invention compositions are useful, for example, as contrast agents for magnetic resonance imaging (MRI), ultrasonography, and X-ray computer tomography. The polymeric shell diameter is typically approximately 2 microns in diameter. Consequently, these materials have organ specificity due to rapid scavenging by the reticuloendothial system (RES) or the mononuclear phagocyte (MNP) system upon intravenous injection. Furthermore, polymeric shells of the invention can be used to measure and monitor local oxygen and temperature. Exemplary contrast agents contemplated for use in the practice of the present invention include fluorinated compounds. Fluorinated compounds in general are hydrophobic and as such have limited water solubility. The invention method permits preparation of such compounds in a biocompatible form suitable for ready delivery.