Abstract:
A method for integrating an optical device and an electronic device on a semiconductor substrate comprises forming openings within an active semiconductor layer in a first region of the semiconductor substrate, wherein the first region corresponds to an electronic device portion and the second region corresponds to an optical device portion. A semiconductor layer is epitaxially grown overlying an exposed active semiconductor layer in the second region, the epitaxially grown semiconductor layer corresponding to an optical device region. At least a portion of an electronic device is formed on the active semiconductor layer within the electronic device portion of the semiconductor substrate. The method further includes forming openings within the epitaxially grown semiconductor layer of the optical device portion of the semiconductor substrate, wherein the openings define one or more features of an optical device.
Abstract:
In one embodiment, a method for forming a semiconductor device is described. A semiconductor substrate has a first portion and a second portion. A first dielectric layer formed over the first portion of the semiconductor substrate and a second dielectric layer is formed over the second portion of the semiconductor substrate. A cap that may include silicon, such as polysilicon, is formed over the first dielectric layer. A first electrode layer is formed over the cap and a second electrode layer is formed over the second dielectric.
Abstract:
A semiconductor structure has a waveguide a transistor on the same integrated circuit. One trench isolation technique is used for defining a transistor region and another is used for optimizing a lateral boundary of the waveguide. Both the waveguide and the transistor have trenches with liners that can be separately optimized. The transistor has a salicide for source/drain contacts. During this process, a salicide block is used over the waveguide to prevent salicide formation in unwanted areas of the waveguide. The depth of the trench for the waveguide can be lower than that of the trench for the transistor isolation. Trench isolation depth can be set by an etch stop region that can be either a thin oxide layer or a buffer layer that is selectively etchable with respect to the top semiconductor layer and that can be used as a seed layer for growing the top semiconductor layer.
Abstract:
A method for forming a semiconductor device includes providing a semiconductor substrate having a first region and a second region. The first region has one or more first elements and the second region has one or more second elements. The first elements are different from the second elements. A tile location and a first tile surface area for a tile feature on the semiconductor device is defined. An active semiconductor layer is formed over both the first region and the second region of the semiconductor substrate. A first trench is formed in the active semiconductor layer at the tile location using a negative tone mask. The first trench has a first depth and forms at least a portion of the tile feature. A second trench is formed in the active semiconductor layer using a positive tone mask. The second trench has a second depth different than the first depth.
Abstract:
A semiconductor process and apparatus provide a planarized hybrid substrate (18) by exposing a buried oxide layer (80) in a first area (99), selectively etching the buried oxide layer (80) to expose a first semiconductor layer (70) in a second smaller seed area (98), and then epitaxially growing a first epitaxial semiconductor material from the seed area (98) of the first semiconductor layer (70) that fills the second trench opening (100) and grows laterally over the exposed insulator layer (80) to fill at least part of the first trench opening (99), thereby forming a first epitaxial semiconductor layer (101) that is electrically isolated from the second semiconductor layer (90). By forming a first SOI transistor device (160) over a first SOI layer (90) using deposited (100) silicon and forming first SOI transistor (161) over an epitaxially grown (110) silicon layer (101), a high performance CMOS device is obtained.
Abstract:
A semiconductor process and apparatus provide a planarized hybrid substrate (18) by exposing a buried oxide layer (80) in a first area (99), selectively etching the buried oxide layer (80) to expose a first semiconductor layer (70) in a second smaller seed area (98), and then epitaxially growing a first epitaxial semiconductor material from the seed area (98) of the first semiconductor layer (70) that fills the second trench opening (100) and grows laterally over the exposed insulator layer (80) to fill at least part of the first trench opening (99), thereby forming a first epitaxial semiconductor layer (101) that is electrically isolated from the second semiconductor layer (90). By forming a first SOI transistor device (160) over a first SOI layer (90) using deposited (100) silicon and forming first SOI transistor (161) over an epitaxially grown (110) silicon layer (101), a high performance CMOS device is obtained.
Abstract:
A method for making a semiconductor device is provided which comprises (a) creating a first data set (301) which defines a first set of tiles (303) for a trench chemical mechanical polishing (CMP) process; (b) deriving a first trench CMP mask set (307) and at least one epitaxial growth mask set (321, 331) from the first data set, wherein the at least one epitaxial growth mask set corresponds to tiles (305, 307) present on first (203) and second (207) distinct semiconductor surfaces; (c) reconfiguring the first trench CMP mask set to account for the at least one epitaxial growth mask set, thereby defining a second trench CMP mask set (308), wherein the second trench CMP mask set defines a set of trench CMP tiles; and (d) using the second trench CMP mask set to make a semiconductor device.
Abstract:
A method for making a semiconductor device is provided which comprises (a) creating a data set (301) which defines a set of tiles for a polysilicon deposition process; (b) deriving a polysilicon deposition mask set (311) from the data set, wherein the polysilicon deposition mask set includes a plurality of polysilicon tiles (303); (c) deriving an epitaxial growth mask set (321) from the data set, wherein the epitaxial growth mask set includes a plurality of epitaxial tiles (305); and (d) using the polysilicon deposition mask set and the epitaxial growth mask set to make a semiconductor device (331); wherein the epitaxial growth mask set is derived from the data set by using at least a portion of the tile pattern defined in the data set for at least a portion of the tile pattern defined in the epitaxial deposition mask set.
Abstract:
A semiconductor structure has a waveguide a transistor on the same integrated circuit. One trench isolation technique is used for defining a transistor region and another is used for optimizing a lateral boundary of the waveguide. Both the waveguide and the transistor have trenches with liners that can be separately optimized. The transistor has a salicide for source/drain contacts. During this process, a salicide block is used over the waveguide to prevent salicide formation in unwanted areas of the waveguide. The depth of the trench for the waveguide can be lower than that of the trench for the transistor isolation. Trench isolation depth can be set by an etch stop region that can be either a thin oxide layer or a buffer layer that is selectively etchable with respect to the top semiconductor layer and that can be used as a seed layer for growing the top semiconductor layer.
Abstract:
A method for making a semiconductor device is provided which comprises (a) creating a data set (301) which defines a set of tiles for a polysilicon deposition process; (b) deriving a polysilicon deposition mask set (311) from the data set, wherein the polysilicon deposition mask set includes a plurality of polysilicon tiles (303); (c) deriving an epitaxial growth mask set (321) from the data set, wherein the epitaxial growth mask set includes a plurality of epitaxial tiles (305); and (d) using the polysilicon deposition mask set and the epitaxial growth mask set to make a semiconductor device (331); wherein the epitaxial growth mask set is derived from the data set by using at least a portion of the tile pattern defined in the data set for at least a portion of the tile pattern defined in the epitaxial deposition mask set.