Abstract:
In a method for producing a laser diode, a number of laser diodes are produced on a wafer. The wafer is broken down into wafer pieces, each wafer piece having a plurality of laser diodes being arranged side by side. One wafer piece is inserted into a first mount that includes a first covering element overlapping a front face of the wafer piece and shadowing a bottom area of the front face of the wafer piece. A minor layer is deposited on an unshadowed upper area of the wafer piece's front face. The wafer piece is inserted into a second mount, which includes a second covering element that shadows the minor layer of the upper area of the front face. An electrically conductive contact layer is deposited on an unshadowed bottom area of the wafer piece's front face. The wafer piece is subsequently broken down into individual laser diodes.
Abstract:
In a method for producing a laser diode, a number of laser diodes are produced on a wafer. The wafer is broken down into wafer pieces, each wafer piece having a plurality of laser diodes being arranged side by side. One wafer piece is inserted into a first mount that includes a first covering element overlapping a front face of the wafer piece and shadowing a bottom area of the front face of the wafer piece. A minor layer is deposited on an unshadowed upper area of the wafer piece's front face. The wafer piece is inserted into a second mount, which includes a second covering element that shadows the minor layer of the upper area of the front face. An electrically conductive contact layer is deposited on an unshadowed bottom area of the wafer piece's front face. The wafer piece is subsequently broken down into individual laser diodes.
Abstract:
Method for producing semiconductor laser elements (1) comprises A) providing a carrier composite (20) having a plurality of carriers (2) for the semiconductor laser elements (1), B) providing a laser bar (30) having a plurality of semiconductor laser diodes (3) which comprise a common growth substrate (31) and a semiconductor layer sequence (32) grown thereon, C) generating predetermined breaking points (35) on a substrate underside (34) of the growth substrate (31), said substrate underside facing away from the semiconductor layer sequence (32), D) attaching the laser bar (30) to a carrier upper side (23) of the carrier composite (20), wherein the attachment is performed at an elevated temperature and is followed by cooling, and E) singulating into the semiconductor laser elements (1), wherein steps B) to E) are performed in the indicated sequence.
Abstract:
A method of producing a semiconductor laser element includes A) providing at least one carrier assemblage having a multiplicity of carriers for the semiconductor laser elements, C) providing at least one laser bar having a multiplicity of semiconductor laser diodes which include a common growth substrate and a semiconductor layer sequence grown thereon, D) fitting the laser bar on a top side of the carrier assemblage, and E) singulating to form the semiconductor laser elements after D).
Abstract:
A method of producing a semiconductor laser element includes A) providing at least one carrier assemblage having a multiplicity of carriers for the semiconductor laser elements, C) providing at least one laser bar having a multiplicity of semiconductor laser diodes which include a common growth substrate and a semiconductor layer sequence grown thereon, D) fitting the laser bar on a top side of the carrier assemblage, and E) singulating to form the semiconductor laser elements after D).