Abstract:
In a successive approximation AD converter, a noise generator outputs the output of a ΔΣ modulator as a noise signal. A selector circuit can output the noise signal, in place of a digital signal for generating a comparison-target voltage for the next bit, to a capacitor element of a capacitance DAC. During sampling of an analog input voltage, the noise signal is supplied to the capacitance DAC via the selector circuit, and thereafter normal successive approximation operation is executed.
Abstract:
A capacitor array includes a plurality of comb capacitors sharing a common comb electrode. At least one of the comb capacitors has a comb electrode as a single base part. Each of the other ones of the comb capacitors has an electrode formed by coupling a plurality of base parts. In the other ones of the comb capacitors, a space between a wire coupling the base parts and an end of each of comb teeth of the common electrode, which is interposed between the base parts, is larger than a space between a base of each of the base parts of the plurality of comb capacitors and an end of each of the comb teeth of the common electrode, which is interposed between comb teeth of the base part.
Abstract:
A reference voltage is maintained stable against disturbance noise and self-noise of an internal circuit. A reference voltage stabilizer circuit for stabilizing the reference voltage to be supplied through at least one of first or second signal lines includes a preceding-stage circuit including a capacitive path connected between the first and second signal lines; and a subsequent-stage circuit including a resistive path connected between the first and second signal lines, and a resistive circuit inserted, between the capacitive path and the resistive path, into one of the first or second signal lines through which the reference voltage is supplied.
Abstract:
A higher-order DAC and a lower-order DAC each have a plurality of capacitive elements having capacitance values weighted with a binary ratio and are configured so that a first terminal of each of the capacitive elements is connected to a common node and a second terminal thereof is connected to either a first or second voltage selectively. The higher-order DAC and the lower-order DAC are coupled by a coupling capacitor. A higher-order DAC control circuit outputs either a correction control signal or a digital signal output from a successive approximation circuit selectively to the higher-order DAC. The lower-order DAC has at least one variable capacitive element of which a first terminal is connected to the common node and a second terminal is connected to either the first or second voltage selectively depending on a higher-order bit of the digital signal output from the successive approximation circuit to the higher-order DAC.
Abstract:
A actuator driver includes a digital filter configured to perform phase compensation of a digital torque command signal using a fed-back digital signal; a digital PWM generator configured to generate a plurality of pulse-width modulated PWM control signals in response to an output of the digital filter; at least one H bridge configured to select and output a first or second terminal voltage in response to the plurality of PWM control signals; first and second continuous time ΔΣ A/D converters configured to convert the first and second terminal voltages from analog to digital, respectively; and a feed-back filter configured to decimate outputs of the first and second continuous time ΔΣ A/D converters to feed back the digital signal to the digital filter.
Abstract translation:致动器驱动器包括:数字滤波器,被配置为使用反馈数字信号执行数字转矩指令信号的相位补偿; 数字PWM发生器,被配置为响应于所述数字滤波器的输出而产生多个脉冲宽度调制的PWM控制信号; 至少一个H桥,被配置为响应于所述多个PWM控制信号来选择和输出第一或第二端电压; 连续第一连续时间& A / D转换器被配置为分别将第一和第二端子电压从模拟转换成数字; 以及反馈滤波器,被配置为对所述第一连续时间和所述第二连续时间Dgr的输出进行抽取; A / D转换器将数字信号反馈到数字滤波器。
Abstract:
An oscillator circuit complementarily increases or reduces, in response to a transition of a signal level of a reference clock, a signal level of a first oscillation signal and a signal level of a second oscillation signal. An oscillation control circuit compares the first and second oscillation signals to a comparison voltage, and transitions the signal level of the reference clock in accordance with a result of the comparison. A reference control circuit increases or reduces the comparison voltage so that a difference between a signal level of an intermediate signal which is proportional to respective swings of the first and second oscillation signals and a reference voltage is reduced. A reference voltage control circuit increases or reduces the reference voltage according to a frequency difference between a basis clock and the reference clock.