Abstract:
Elongated seamless capsules containing biological material are prepared by a method in which a coagulant, which includes a cell suspension or other biologically active factor, and a polymeric casting solution are extruded through a common extrusion port having at least two concentric bores, such that the coagulant is extruded through the inner bore and the polymeric casting solution is extruded through the outer bore. The method involves initiating extrusion of the coagulant subsequent to initiating delivery of the casting solution through the respective bores to form a capsule having a curved and smooth leading edge shape. Delivery of the coagulant is then shut off, and extrusion of the casting solution is terminated either immediately or after some predetermined time.
Abstract:
Methods and systems are disclosed for encapsulating viable cells which produce biologically-active factors. The cells are encapsulated within a semipermeable, polymeric membrane by co-extruding an aqueous cell suspension and a polymeric solution through a common port to form a tubular extrudate having a polymeric outer coating which encapsulates the cell suspension. For example, the cell suspension and the polymeric solution can be extruded through a common extrusion port having at least two concentric bores, such that the cell suspension is extruded through the inner bore and the polymeric solution is extruded through the outer bore. The polymeric solution coagulates to form an outer coating. As the outer coating is formed, the ends of the tubular extrudate can be sealed to form a cell capsule. In one embodiment, the tubular extrudate is sealed at intervals to define separate cell compartments connected by polymeric links.
Abstract:
Methods and systems are disclosed for encapsulating viable cells which produce biologically-active factors. The cells are encapsulated within a semipermeable, polymeric membrane by co-extruding an aqueous cell suspension and a polymeric solution through a common port to form a tubular extrudate having a polymeric outer coating which encapsulates the cell suspension. For example, the cell suspension and the polymeric solution can be extruded through a common extrusion port having at least two concentric bores, such that the cell suspension is extruded through the inner bore and the polymeric solution is extruded through the outer bore. The polymeric solution coagulates to form an outer coating. As the outer coating is formed, the ends of the tubular extrudate can be sealed to form a cell capsule. In one embodiment, the tubular extrudate is sealed at intervals to define separate cell compartments connected by polymeric links.
Abstract:
Elongated seamless capsules containing biological material are prepared by a method in which a coagulant, which includes a cell suspension or other biological material, and a polymeric casting solution are extruded through a common extrusion port having at least two concentric bores, such that the coagulant is extruded through an inner bore and the polymeric casting solution is extruded through an outer bore. Extrusion of the coagulant is initiated subsequent to initiating delivery of the casting solution to form a capsule having a curved and smooth leading edge shape. Delivery of the coagulant is then shut off, and extrusion of the casting solution is terminated either immediately or after some predetermined time. This procedure can be modified to form in the capsule a coaxial rod that is connected to one end but not the other end of the capsule. This is accomplished by drawing casting solution into the inner bore after initiating extrusion of the casting solution through the outer bore, and then initiating delivery of the coagulant through the inner bore so as to coagulate the casting solution therein and form a rod, and ejecting the rod from the inner bore by pressure of the coagulant. Delivery of the coagulant and casting solution are then terminated as described above.
Abstract:
Methods and systems are disclosed for encapsulating viable cells which produce biologically-active factors. The cells are encapsulated within a semipermeable, polymeric membrane by co-extruding an aqueous cell suspension and a polymeric solution through a common port to form a tubular extrudate having a polymeric outer coating which encapsulates the cell suspension. For example, the cell suspension and the polymeric solution can be extruded through a common extrusion port having at least two concentric bores, such that the cell suspension is extruded through the inner bore and the polymeric solution is extruded through the outer bore. The polymeric solution coagulates to form an outer coating. As the outer coating is formed, the ends of the tubular extrudate can be sealed to form a cell capsule. In one embodiment, the tubular extrudate is sealed at intervals to define separate cell compartments connected by polymeric links.
Abstract:
Living cells such as animal cells which produce biologically active factors are encapsulated within a semipermeable, polymeric membrane such as polyacrylate by co-extruding an aqueous cell suspension and a polymeric solution through a common port having at least one concentric bores to form a tubular extrudate having a polymeric membrane which encapsulates the cell suspension. The cell suspension is extruded through an inner bore and the polymeric solution is extruded through an outer bore while a pressure differential is maintained between the cell suspension and the polymeric solution to impede solvent diffusion from the polymeric solution into the cell suspension. The polymeric solution coagulates to form an outer coating or membrane as the polymeric solution and the cell suspension are extruded through the extrusion port. As the outer membrane is formed, the ends of the tubular extrudate are sealed to form a cell capsule. In one embodiment, the tubular extrudate is sealed at intervals to define separate cell compartments connected by polymeric links. In another embodiment, a cell capsule connected to a tethering filament is formed. The polymeric membrane may contain additives such as a surfactant, an anti-inflammatory agent or an anti-oxidant and can be coated with a protective barrier. The cell suspension may contain nutrients and an anchorage substrate.
Abstract:
The invention relates to the use of an IL-6R/IL-6 chimera, a mutein, isoform, fused protein, functional derivative, active fraction or circularly permutated derivative or a salt thereof, for the manufacture of a medicament for the treatment and/or prevention of Huntington's disease.
Abstract:
Disclosed and claimed are methods for treating or preventing neurodegenerative diseases, conditions or maladies or symptoms or physiology associated therewith, such as treating or preventing Parkinson's disease or symptoms or physiology associated therewith such as motor deficits or nigrostriatal degeneration; or, for inducing nigrostriatal regeneration. Advantageously, the methods involve administering a lentiviral vector that expresses GDNF, such as human GDNF, or a variant, homolog, analog or derivative thereof.
Abstract:
An immunoisolatory vehicle for the implantation into an individual of cells which produce a needed product or provide a needed metabolic function. The vehicle is comprised of a core region containing isolated cells and materials sufficient to maintain the cells, and a permselective, biocompatible, peripheral region free of the isolated cells, which immunoisolates the core yet provides for the delivery of the secreted product or metabolic function to the individual.
Abstract:
Refillable immunoisolatory neurological therapy devices for local and controlled delivery of a biologically active factor to the brain of a patient. The devices include a cell chamber adapted for infusion with nsecretory cells and having at least one semipermeable or permselective surface across which biologically active factors secreted by the cells can be delivered to the brain. The devices also include means for introducing secretory cells into the cell chamber, and means for renewing the cells or cell medium.