摘要:
The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises forming a layer of dielectric material, forming a hard mask layer above the layer of dielectric material, and forming an opening in the hard mask layer. The method further comprises forming a sidewall spacer in the opening in the hard mask layer that defines a reduced opening, forming an opening in the layer of dielectric material below the reduced opening, and forming a conductive interconnection in the opening in the dielectric layer.
摘要:
A metal interconnect structure and method of making the same implants ions of an alloy elements into a copper line through a via. Then ion implantation of the alloy elements in the copper line through the via provides improved electromigration properties at the copper line at a critical electromigration failure site, without attempting to provide alloy elements throughout the entire copper line.
摘要:
The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises defining a photoresist feature having a first size in a layer of photoresist that is formed above a layer of dielectric material. The method further comprises reducing the first size of the photoresist feature to produce a reduced size photoresist feature, forming an opening in the layer of dielectric material under the reduced size photoresist feature, and forming a conductive material in the opening in the layer of dielectric material.
摘要:
A metal interconnect structure and method for making the same provides an alloying elements layer that lines a via in a dielectric layer. The alloying element layer is therefore inserted at a critical electromigration failure site, i.e., at the fast diffusion site below the via in the underlying metal. Once the copper fill is performed in the via, an annealing step allows the alloying element to go into solid solution with the copper in and around the via. The solid solution of the alloying element and copper at the bottom of the via in the copper line improves the electromigration reliability of the structure.
摘要:
The present invention is directed to a method of forming semiconductor devices. In one illustrative embodiment, the method comprises defining a photoresist feature having a first size in a layer of photoresist that is formed above a layer of dielectric material. The method further comprises reducing the first size of the photoresist feature to produce a reduced size photoresist feature, forming an opening in the layer of dielectric material under the reduced size photoresist feature, and forming a conductive material in the opening in the layer of dielectric material.
摘要:
A method is provided for forming a conductive interconnect, the method comprising forming a first dielectric layer above a structure layer, forming a first opening in the first dielectric layer, and forming a first conductive structure in the first opening. The method also comprises forming a second dielectric layer above the first dielectric layer and above the first conductive structure, forming a second opening in the second dielectric layer above at least a portion of the first conductive structure, the second opening having a side surface and a bottom surface, and forming at least one barrier metal layer in the second opening on the side surface and on the bottom surface. In addition, the method comprises removing a portion of the at least one barrier metal layer from the bottom surface, and forming a second conductive structure in the second opening, the second conductive structure contacting the at least the portion of the first conductive structure. The method further comprises forming the conductive interconnect by annealing the second conductive structure and the first conductive structure.
摘要:
A method for forming an interconnect structure includes forming a recess in a dielectric layer of a substrate. An adhesion barrier layer is formed to line the recess. A first stress level is present across a first interface between the adhesion barrier layer and the dielectric layer. A stress-reducing barrier layer is formed over the adhesion barrier layer. The stress-reducing barrier layer reduces the first stress level to provide a second stress level, less than the first stress level, across a second interface between the adhesion barrier layer, the stress-reducing barrier layer, and the dielectric layer. The recess is filled with a fill layer.
摘要:
Silicidation techniques with improved rare earth silicide morphology for fabrication of semiconductor device contacts. For example, a method for forming silicide includes implanting a silicon layer with an amorphizing species to form an amorphous silicon region in the silicon layer and depositing a rare earth metal film on the silicon layer in contact with the amorphous silicon region. A suicide process is then performed to combine the rare earth metal film and the amorphous silicon region to form a silicide film on the silicon layer.
摘要:
Transistor devices are formed with nickel silicide layers formulated to prevent degradation upon removal of overlying stress liners. Embodiments include transistors with nickel silicide layers having a platinum composition gradient increasing in platinum content toward the upper surfaces thereof, i.e., increasing in platinum in a direction away from the gate electrode and source/drain regions. Embodiments include forming a first layer of nickel having a first amount of platinum and forming, on the first layer of nickel, a second layer of nickel having a second amount of platinum, the second weight percent of platinum being greater than the first weight percent. The layers of nickel are then annealed to form a nickel silicide layer having the platinum composition gradient increasing in platinum toward the upper surface. The platinum concentration gradient protects the nickel silicide layer during subsequent processing, as during etching to remove overlying stress liners, thereby avoiding a decrease in device performance.
摘要:
A semiconductor device is disclosed having a conductive gate structure overlying a semiconductor layer having a major surface. An isolation material is recessed within a trench region below the major surface of the semiconductor layer. An epitaxial layer is formed overlying a portion of the major surface and on an active region forming a sidewall of the trench.