Process for forming a semiconductor device
    1.
    发明授权
    Process for forming a semiconductor device 有权
    用于形成半导体器件的工艺

    公开(公告)号:US06297173B1

    公开(公告)日:2001-10-02

    申请号:US09383238

    申请日:1999-08-26

    IPC分类号: H01L2131

    摘要: A method for forming an oxynitride gate dielectric layer (202, 204) begins by providing a semiconductor substrate (200). This semiconductor substrate is cleaned via process steps (10-28). Optional nitridation and oxidation are performed via steps (50 and 60) to form a thin interface layer (202). Bulk oxynitride gate deposition occurs via a step (70) to form a bulk gate dielectric material (204) having custom tailored oxygen and nitrogen profile and concentration. A step (10) is then utilized to in situ cap this bulk dielectric layer (204) with a polysilicon or amorphous silicon layer (208). The layer (208) ensures that the custom tailors oxygen and nitrogen profile and concentration of the underlying gate dielectric (204) is preserved even in the presence of subsequent wafer exposure to oxygen ambients.

    摘要翻译: 形成氧氮化物栅极电介质层(202,204)的方法由提供半导体衬底(200)开始。 通过工艺步骤(10-28)清洁该半导体衬底。 通过步骤(50和60)进行可选的氮化和氧化以形成薄界面层(202)。 大量氮氧化物栅极沉积通过步骤(70)发生,以形成具有定制的氧和氮分布和浓度的体栅电介质材料(204)。 然后使用步骤(10)以多晶硅或非晶硅层(208)原位覆盖该体电介质层(204)。 即使在随后的晶片暴露于氧气氛的情况下,层(208)确保定制定制氧气和氮气分布和下层栅极电介质(204)的浓度。

    Process for forming a semiconductor device
    2.
    发明授权
    Process for forming a semiconductor device 失效
    用于形成半导体器件的工艺

    公开(公告)号:US5972804A

    公开(公告)日:1999-10-26

    申请号:US963436

    申请日:1997-11-03

    摘要: A method for forming an oxynitride gate dielectric layer (202, 204) begins by providing a semiconductor substrate (200). This semiconductor substrate is cleaned via process steps (10-28). Optional nitridation and oxidation are performed via steps (50 and 60) to form a thin interface layer (202). Bulk oxynitride gate deposition occurs via a step (70) to form a bulk gate dielectric material (204) having custom tailored oxygen and nitrogen profile and concentration. A step (10) is then utilized to in situ cap this bulk dielectric layer (204) with a polysilicon or amorphous silicon layer (208). The layer (208) ensures that the custom tailors oxygen and nitrogen profile and concentration of the underlying gate dielectric (204) is preserved even in the presence of subsequent wafer exposure to oxygen ambients.

    摘要翻译: 形成氧氮化物栅极电介质层(202,204)的方法由提供半导体衬底(200)开始。 通过工艺步骤(10-28)清洁该半导体衬底。 通过步骤(50和60)进行可选的氮化和氧化以形成薄界面层(202)。 大量氮氧化物栅极沉积通过步骤(70)发生,以形成具有定制的氧和氮分布和浓度的体栅电介质材料(204)。 然后使用步骤(10)以多晶硅或非晶硅层(208)原位覆盖该体电介质层(204)。 即使在随后的晶片暴露于氧气氛的情况下,层(208)确保定制定制氧气和氮气分布和下层栅极电介质(204)的浓度。

    Process for fabricating a MOSFET device having reduced reverse short
channel effects
    4.
    发明授权
    Process for fabricating a MOSFET device having reduced reverse short channel effects 失效
    具有减小的反向短通道效应的MOSFET器件的制造工艺

    公开(公告)号:US5552332A

    公开(公告)日:1996-09-03

    申请号:US460339

    申请日:1995-06-02

    摘要: A process for the fabrication of an MOSFET device includes the formation of a buffer layer (28) overlying the surface of a semiconductor substrate (14) adjacent to a gate electrode (18). A defect compensating species is diffused through the buffer layer (28) and through a gate dielectric layer (12) to form a defect-compensating region (30) at the surface (14) of the semiconductor substrate (10). The defect-compensating region (30) in conjunction with the buffer layer (28) minimize and control the population of point defects in the channel region (22) of the semiconductor substrate (10). By controlling the population of point defects in the channel region (22), a substantially uniform doping profile is maintained in a shallow doped region (16) formed in the semiconductor substrate (10) at the substrate surface (14). The maintenance of a uniform doping profile in the shallow doped region (16) results in improved threshold voltage stability as the lateral dimension of the channel region (22) is reduced.

    摘要翻译: 用于制造MOSFET器件的工艺包括形成覆盖在与栅电极(18)相邻的半导体衬底(14)的表面上的缓冲层(28)。 缺陷补偿物质通过缓冲层(28)和栅极电介质层(12)扩散,以在半导体衬底(10)的表面(14)处形成缺陷补偿区域(30)。 与缓冲层(28)结合的缺陷补偿区域(30)最小化并控制半导体衬底(10)的沟道区域(22)中的点缺陷的群体。 通过控制沟道区域(22)中的点缺陷的群体,在衬底表面(14)处形成在半导体衬底(10)中的浅掺杂区域(16)中保持基本均匀的掺杂分布。 在浅掺杂区域(16)中维持均匀的掺杂分布导致当沟道区域(22)的横向尺寸减小时阈值电压稳定性得到改善。

    Process for forming field isolation
    5.
    发明授权
    Process for forming field isolation 失效
    用于形成场隔离的方法

    公开(公告)号:US5707889A

    公开(公告)日:1998-01-13

    申请号:US645362

    申请日:1996-05-13

    IPC分类号: H01L21/32 H01L21/76

    CPC分类号: H01L21/32

    摘要: An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.

    摘要翻译: 在LOCOS场隔离工艺中使用时,形成退火的非晶硅层,形成场隔离区。 退火的非晶硅层有助于减少与常规LOCOS场隔离过程相比的侵蚀,并且有助于降低与PBL场隔离工艺相比在衬底内形成凹坑的可能性。 退火的非晶硅层可以用于形成场隔离区域,其限定包括MOSFET和双极晶体管的晶体管之间的有源区。 可以使用掺杂硅或富硅的氮化硅层代替常规材料。 如果在不高于600摄氏度的温度下沉积氮化硅层,则可以在形成氮化硅层之后执行非晶硅层的退火。

    Process for forming field isolation and a structure over a semiconductor
substrate
    7.
    发明授权
    Process for forming field isolation and a structure over a semiconductor substrate 失效
    用于形成场隔离的工艺和半导体衬底上的结构

    公开(公告)号:US5580815A

    公开(公告)日:1996-12-03

    申请号:US200029

    申请日:1994-02-22

    IPC分类号: H01L21/32 H01L21/76

    CPC分类号: H01L21/32

    摘要: An annealed amorphous silicon layer is formed prior to forming field isolation regions when using in a LOCOS field isolation process. The annealed amorphous silicon layer helps to reduce encroachment compared to conventional LOCOS field isolation process and helps to reduce the likelihood of forming pits within a substrate compared to a PBL field isolation process. The annealed amorphous silicon layer may be used in forming field isolation regions that defines the active regions between transistors including MOSFETs and bipolar transistors. Doped silicon or a silicon-rich silicon nitride layer may be used in place of conventional materials. The anneal of the amorphous silicon layer may be performed after forming a silicon nitride layer if the silicon nitride layer is deposited at a temperature no higher than 600 degrees Celsius.

    摘要翻译: 在LOCOS场隔离工艺中使用时,形成退火的非晶硅层,形成场隔离区。 退火的非晶硅层有助于减少与常规LOCOS场隔离过程相比的侵蚀,并且有助于降低与PBL场隔离工艺相比在衬底内形成凹坑的可能性。 退火的非晶硅层可以用于形成场隔离区域,其限定包括MOSFET和双极晶体管的晶体管之间的有源区。 可以使用掺杂硅或富硅的氮化硅层代替常规材料。 如果在不高于600摄氏度的温度下沉积氮化硅层,则可以在形成氮化硅层之后执行非晶硅层的退火。

    Method for manufacturing a high dielectric constant gate oxide for use
in semiconductor integrated circuits
    8.
    发明授权
    Method for manufacturing a high dielectric constant gate oxide for use in semiconductor integrated circuits 失效
    制造用于半导体集成电路的高介电常数栅极氧化物的方法

    公开(公告)号:US06063698A

    公开(公告)日:2000-05-16

    申请号:US885433

    申请日:1997-06-30

    摘要: A method for forming a gate dielectric (14b) begins by providing a substrate (12). A high K dielectric layer (14a) is deposited overlying the substrate (12). The dielectric layer (14a) contains bulk traps (16) and interface traps (18). A polysilicon gate electrode (20) is then patterned and etched overlying the gate dielectric (14a) whereby the plasma etching of the gate electrode (20) results in substrate plasma damage (22). A post gate wet oxidation process is performed between 750.degree. C. and 850.degree. C. to reduce plasma etch damage and trap sites (16, 18) in order to provide an improved gate dielectric (14b). Source and drain electrodes (30) are then formed within the substrate and laterally adjacent the gate electrode (20) to form a transistor device having more consistent threshold voltages, improved subthreshold slope operation, reduced gate to channel leakage, and improved speed of operation.

    摘要翻译: 形成栅极电介质(14b)的方法开始于提供衬底(12)。 沉积在基底(12)上的高K电介质层(14a)。 电介质层(14a)包含大量阱(16)和界面阱(18)。 然后将多晶硅栅电极(20)图案化并蚀刻在栅极电介质(14a)上,由此栅电极(20)的等离子体蚀刻导致衬底等离子体损伤(22)。 在750℃至850℃之间进行后门湿氧化处理以减少等离子体蚀刻损伤和捕集位点(16,18),以提供改进的栅极电介质(14b)。 源极和漏极(30)然后形成在衬底内并且横向邻近栅电极(20),以形成具有更一致的阈值电压,改进的亚阈值斜率操作,减小的栅极到沟道泄漏以及改善的操作速度的晶体管器件。

    Method of formation of semiconductor gate dielectric
    9.
    发明授权
    Method of formation of semiconductor gate dielectric 失效
    形成半导体栅极电介质的方法

    公开(公告)号:US5726087A

    公开(公告)日:1998-03-10

    申请号:US258360

    申请日:1994-06-09

    摘要: A semiconductor dielectric (10) is formed by providing a base layer (12) having a surface. A thin interface layer (13) is formed at the surface of the base layer (12). The thin interface layer has a substantial concentration of one of either nitrogen or fluorine. A thermal oxide layer (14) is formed overlying the interface layer (13). A deposited dielectric layer (16) is formed overlying the thermal oxide layer (14). The deposited dielectric layer (16) is optionally densified by a thermal heat cycle. The deposited dielectric layer (16) has micropores that are misaligned to micropores in the thermal oxide layer (14) to provide enhanced features.

    摘要翻译: 通过提供具有表面的基底层(12)形成半导体电介质(10)。 在基层(12)的表面形成有薄界面层(13)。 薄界面层具有大量浓度的氮或氟之一。 在界面层(13)上形成热氧化层(14)。 沉积的介电层(16)形成在热氧化物层(14)上。 沉积的介电层(16)任选地通过热热循环致密化。 沉积的介电层(16)具有与热氧化物层(14)中的微孔不对准的微孔,以提供增强的特征。

    Method for forming a fluorinated nitrogen containing dielectric
    10.
    发明授权
    Method for forming a fluorinated nitrogen containing dielectric 失效
    形成含氟含氮电介质的方法

    公开(公告)号:US5571734A

    公开(公告)日:1996-11-05

    申请号:US316175

    申请日:1994-10-03

    摘要: This disclosure reveals a manufacturable and controllable method to fabricate a dielectric which increases the device current drive. A nitrogen-containing ambient is used to oxidize a surface of a substrate (10) to form a nitrogen-containing dielectric (12). Then a fluorine-containing specie (F) is introduced, preferably through implanting, into a gate electrode (20) overlying the nitrogen-containing dielectric. The fluorine is then driven into the underlying nitrogen-containing dielectric. A fluorinated nitrogen-containing region (14') is expected to form at the interface between dielectric (12') and substrate (10). The interaction between fluorine and nitrogen increases the peak transconductance as well as the transconductance at a high electric field for the dielectric. Therefore, the overall current drive is increased by this approach.

    摘要翻译: 本公开揭示了可制造和可控制的方法来制造增加器件电流驱动的电介质。 使用含氮环境来氧化衬底(10)的表面以形成含氮电介质(12)。 然后,优选通过注入将含氟物质(F)引入覆盖含氮电介质的栅电极(20)中。 然后将氟驱动到下面的含氮电介质中。 期望在电介质(12')和衬底(10)之间的界面处形成含氟含氮区域(14')。 氟和氮之间的相互作用增加了在电介质的高电场下的峰跨越以及跨导。 因此,通过这种方法增加了整体目前的驱动力。