摘要:
A method of forming conductive features on a substrate, the method includes reacting a metal compound with a reducing agent in the presence of a stabilizer in a reaction mixture comprising the metal compound, the reducing agent, and the stabilizer, wherein the reaction mixture is substantially free of solvent, to form a plurality of metal nanoparticles with molecules of the stabilizer on the surface of the metal nanoparticles. After isolating the plurality of metal nanoparticles, a liquid composition that includes a polymeric binder, a liquid and the plurality of metal nanoparticles with molecules of the stabilizer on the surface of the metal nanoparticles is deposited on a substrate by a liquid deposition technique to form a deposited composition. The deposited composition is then heated to form conductive features on the substrate.
摘要:
Described herein are printheads for inkjet printing and, more specifically, printheads modified with a self-assembly monolayer (SAM). Also described are processes for making and using the printheads as well as processes for forming patterns and images on a substrate including jetting inkjet inks or jettable materials using a printhead for inkjet printing that has been modified with a self-assembly monolayer.
摘要:
A method of forming conductive features on a substrate, the method includes, filling a flexible stamp with a metal nanoparticle composition, depositing the metal nanoparticle composition onto the substrate, and heating the deposited metal nanoparticle composition during or after the depositing to form the conductive features.
摘要:
A composition that may be as an electronic circuit element includes a metal nanoparticle, an adhesion promoter compound and a solvent. The adhesion promoter compound may be a hydrolytic silane with at least one organic functional moiety. A method of forming conductive features on a substrate includes depositing a composition containing metal nanoparticles, an adhesion promoter compound and a solvent onto a substrate, and heating the deposited composition to a temperature from about 100° C. to about 200° C.
摘要:
A method including activating an electronic device, such as an organic thin film transistor, by exposing the device to non-ionizing radiation while the device is under an electrical field. Activation of the transistor increases the field effect mobility of the transistor.
摘要:
A method of forming conductive features on a substrate, the method comprising: providing two or more solutions, wherein a metal nanoparticle solution contains metal nanoparticles with a stabilizer and a destabilizer solution contains a destabilizer that destabilizes the stabilizer, liquid depositing the metal nanoparticle solution and the destabilizer solution onto the substrate, wherein during deposition or following the deposition of the metal nanoparticle solution onto the substrate, the metal nanoparticle and the destabilizer are combined with each other, destabilizing the stabilizer from the surface of the metal nanoparticles with the destabilizer and removing the stabilizer and destabilizer from the substrate by heating the substrate to a temperature below about 180° C. or by washing with the solvent
摘要:
A polymer semiconductor compound of the below formula, wherein the side chains, R1, R2, R3 and R4, are arranged in a manner that promotes high mobility and to provide a weak side chain interaction.
摘要:
A method of forming a conductive feature on a three-dimensional object may include depositing a composition comprising nanoparticles onto a portion of the three-dimensional object, and annealing the composition to form the conductive feature. In another embodiment, a method of forming a conductive feature on a three-dimensional object may include printing a composition comprising nanoparticles to produce a contiguous line over a non-planar portion of the three-dimensional object, and heating the composition to form a conductive feature that has conductivity throughout.
摘要:
A metal nanoparticle composition includes a thermally decomposable or UV decomposable stabilizer. A method of forming conductive features on a substrate, includes providing a solution containing metal nanoparticles with a stabilizer; and liquid depositing the solution onto the substrate, wherein during the deposition or following the deposition of the solution onto the substrate, decomposing and removing the stabilizer, by thermal treatment or by UV treatment, at a temperature below about 180° C. to form conductive features on the substrate.
摘要:
A method of forming a conductive ink silver features on a substrate by printing a silver compound solution and a hydrazine compound reducing agent solution on the surface of a substrate with a printhead. The silver compound solution and the hydrazine compound reducing agent solution are mixed just before, during, or following the printing of both solutions on the surface of the substrate, and the silver compound is then reduced to form conductive silver ink features on the substrate.