Abstract:
A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising zinc, cadmium, and sulfur and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material. In a further embodiment, a semiconductor nanocrystal includes a core comprises a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation. In a further embodiment, a semiconductor nanocrystal including a core comprises a first semiconductor material comprising zinc, cadmium, and selenium and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
Abstract:
Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
Abstract:
In one embodiment, a method for forming a coating comprising a semiconductor material on at least a portion of a population of semiconductor nanocrystals comprises providing a first mixture including semiconductor nanocrystals and an aromatic solvent, introducing one or more cation precursors and one or more anion precursors into the first mixture to form a reaction mixture for forming the semiconductor material, reacting the precursors in the reaction mixture, without the addition of an acid compound, under conditions sufficient to grow a coating comprising the semiconductor material on at least a portion of an outer surface of at least a portion of the semiconductor nanocrystals, and wherein an amide compound is formed in situ in the reaction mixture prior to isolating the coated semiconductor nanocrystals. In another embodiment, method for forming a coating comprising a semiconductor material on at least a portion of a population of semiconductor nanocrystals comprises providing a first mixture including semiconductor nanocrystals and a solvent, introducing an amide compound, one or more cation precursors and one or more anion precursors into the first mixture to form a reaction mixture for forming the semiconductor material, and reacting the precursors in the reaction mixture in the presence of the amide compound, under conditions sufficient to grow a coating comprising the semiconductor material on at least a portion of an outer surface of at least a portion of the semiconductor nanocrystals. Semiconductor nanocrystals including coatings grown in accordance with the above methods are also disclosed.
Abstract:
A method for making semiconductor nanocrystals is disclosed, the method comprising adding a secondary phosphine chalcogenide to a solution including a metal source and a liquid medium at a reaction temperature to form a reaction product comprising a semiconductor comprising a metal and a chalcogen, and quenching the reaction mixture to form quantum dots. Methods for overcoating are also disclosed. Semiconductor nanocrystals are also disclosed.
Abstract:
A composition comprising a semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%. Also disclosed is a composition comprising a semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material comprising at least three chemical elements, wherein the semiconductor nanocrystal is capable of emitting light with a photoluminescence quantum efficiency greater than about 60% upon excitation.
Abstract:
A quantum dot including a fluorine-containing ligand attached to a surface thereof and having a coating comprising a fluoropolymer over at least a portion of the outer surface of the quantum dot. A method for preparing a quantum dot with a coating comprising a fluoropolymer over at least a portion of the outer surface of the quantum dot is also disclosed. The method comprises contacting a quantum dot having a fluorine-containing ligand attached to a surface thereof with a fluoropolymer to coat the fluoropolymer over at least a portion of the outer surface of the quantum dot. A device including the quantum dot taught herein is further disclosed. An emissive material including the quantum dot taught herein is further disclosed.
Abstract:
Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
Abstract:
Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials.
Abstract:
A method for making a device, the method comprising: depositing a layer comprising quantum dots over a first electrode, the quantum dots including ligands attached to the outer surfaces thereof; treating the surface of the deposited layer comprising quantum dots to remove the exposed ligands; and forming a device layer thereover. Also disclosed is a device made in accordance with the disclosed method. Another aspect of the invention relates to a device comprising a first electrode and a second electrode, and a layer comprising quantum dots between the two electrodes, the layer comprising quantum dots deposited from a dispersion that have been treated to remove exposed ligands after formation of the layer in the device. Another aspect of the invention relates to a device comprising a first electrode and a second electrode, a layer comprising a first inorganic semiconductor material disposed between the first and second electrodes, and a plurality of quantum dots disposed between the first and second electrodes, the outer surface of the quantum dots comprising a second inorganic semiconductor material, wherein the composition of the first inorganic semiconductor material and the second inorganic semiconductor material is the same (without regard to any ligands on the outer surface of the quantum dot).
Abstract:
A method for preparing a device, the method comprising: forming a first device layer over a first electrode, the layer comprising a metal oxide formed from a sol-gel composition that does not generate acidic by-products, and forming a second electrode over the first device layer, wherein the method further includes forming a layer comprising quantum dots over the first electrode before or after formation of the first device layer. Also disclosed is a device comprising a first device layer formed over a first electrode, the first device layer comprising a metal oxide formed by sol-gel processing that does not include acidic by-products, a second electrode over the first device layer, and a layer comprising quantum dots disposed between the first device layer and one of the two electrodes. A device prepared by the method is also disclosed.