Abstract:
Aspects of the present disclosure provide techniques for phase tracking in wireless communications using frames with some portions that use relatively long symbol durations.
Abstract:
A method of wirelessly communicating includes generating, at a wireless device, a packet including a first preamble field. The method further includes generating a first repeated preamble field by multiplying the first preamble field by a first frequency-domain polarity sequence. The method further includes transmitting the packet from the wireless device. The packet includes the first preamble field and the first repeated preamble field.
Abstract:
A method and apparatus for tracking amplitude and phase of a received low frequency signal comprising a walking pilot signal is disclosed, wherein the pilot signal changes in frequency a number of times according to a sequence that repeats. The design includes initializing a FIFO buffer and summing estimated channel power over the sequence to determine an initial total power. The design also includes, for a new received symbol, determining an updated power estimate for the new received symbol, placing the updated power estimate in the FIFO buffer, and removing a least current value from the FIFO buffer, and estimating amplitude of the signal using a sum of all updated power estimates in the FIFO buffer divided by the initial total power. The design may further include determining a delta phase value using maximum ratio combining scaled with a scaling factor.
Abstract:
Apparatus and methods of using content information for encoding multimedia data are described. A method of processing multimedia data includes obtaining content information of multimedia data, and encoding the multimedia data so as to align a data boundary with a frame boundary in a time domain, wherein said encoding is based on the content information. In another aspect, a method of processing multimedia data includes obtaining a content classification of the multimedia data, and encoding blocks in the multimedia data as intra-coded blocks or inter-coded blocks based on the content classification to increase the error resilience of the encoded multimedia data. Apparatus that can process multimedia data described in these methods are also disclosed.
Abstract:
A method and apparatus for tracking amplitude and phase of a received low frequency signal comprising a walking pilot signal is disclosed, wherein the pilot signal changes in frequency a number of times according to a sequence that repeats. The design includes initializing a FIFO buffer and summing estimated channel power over the sequence to determine an initial total power. The design also includes, for a new received symbol, determining an updated power estimate for the new received symbol, placing the updated power estimate in the FIFO buffer, and removing a least current value from the FIFO buffer, and estimating amplitude of the signal using a sum of all updated power estimates in the FIFO buffer divided by the initial total power. The design may further include determining a delta phase value using maximum ratio combining scaled with a scaling factor.
Abstract:
A method of wirelessly communicating includes generating, at a wireless device, a packet including a first preamble field. The method further includes generating a first repeated preamble field by multiplying the first preamble field by a first frequency-domain polarity sequence. The method further includes transmitting the packet from the wireless device. The packet includes the first preamble field and the first repeated preamble field.
Abstract:
Aspects of the present disclosure provide techniques for phase tracking in wireless communications using frames with some portions that use relatively long symbol durations.
Abstract:
Aspects of the present disclosure provide example preamble formats with repeated signal (SIG) fields that may help provide backwards compatibility and help address the effects of larger delay spreads in various wireless bands (e.g., WiFi bands).
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for detecting ongoing transmissions and assessing channel state, based on midpacket detection. One example method generally includes receiving signals on a primary channel; detecting, based on the received signals, occurrence or non-occurrence of a first ongoing packet transmission on a primary channel; and generating at least one of a busy signal or an idle signal based on the detection. In this manner, collisions may be avoided.
Abstract:
A method of wirelessly communicating a packet includes generating, at a first wireless device, a first packet including a first preamble decodable by a plurality of devices and a second preamble decodable by only a subset of the plurality of devices. The first preamble includes a first signal field. The second preamble includes a first training field. The method further includes transmitting the first packet concurrently with one or more second packets to be transmitted by wireless devices other than the first wireless device.