Abstract:
A flip-flop is provided that includes a sense-amplifier-based master latch clocked by a first edge of a delayed version of a clock signal. A slave latch includes a cross-coupled pair of logic gates for latching a data output signal responsive to a second edge of the clock signal.
Abstract:
The apparatus may include a first latch configured to store a first state or a second state. The first latch may have a first latch input, one of a set input or a reset input, a first pulse clock input, and a first latch output. The first latch input may be coupled to a fixed logic value. The one of the set input or the reset input may be coupled to a clock signal or an inverted clock signal, respectively. The apparatus may include an AND gate having a first AND gate input, a second AND gate input, and a first AND gate output. The clock signal may be coupled to the first AND gate input. The first latch output may be coupled to the second AND gate input. The AND gate output may be configured to output a pulsed clock. The pulsed clock may be coupled to the first pulse clock input.
Abstract:
In one embodiment, a method for signal delay in a scan path comprises, in a scan mode, delaying a scan signal in the scan path by propagating the scan signal through a plurality of delay devices coupled in series, wherein a first one of the delay devices is powered by a first voltage, a second one of the delay devices is powered by a second voltage, and the second voltage is greater than the first voltage. The method also comprises, in a functional mode, disabling the delay devices.
Abstract:
In certain aspects, a semiconductor die includes a power rail, a first gate, and a second gate. The semiconductor die also includes a first gate contact electrically coupled to the first gate, wherein the first gate contact is formed from a first middle of line (MOL) metal layer, and a second gate contact electrically coupled to the second gate, wherein the second gate contact is formed from the first MOL metal layer. The semiconductor die further includes an interconnect formed from a second MOL metal layer, wherein the interconnect is electrically coupled to the first and second gate contacts, and at least a portion of the interconnect is underneath the power rail.
Abstract:
In one embodiment, a method for signal delay in a scan path comprises, in a scan mode, delaying a scan signal in the scan path by propagating the scan signal through a plurality of delay devices coupled in series, wherein a first one of the delay devices is powered by a first voltage, a second one of the delay devices is powered by a second voltage, and the second voltage is greater than the first voltage. The method also comprises, in a functional mode, disabling the delay devices.
Abstract:
In certain aspects, a semiconductor die includes a power rail, a first gate, and a second gate. The semiconductor die also includes a first gate contact electrically coupled to the first gate, wherein the first gate contact is formed from a first middle of line (MOL) metal layer, and a second gate contact electrically coupled to the second gate, wherein the second gate contact is formed from the first MOL metal layer. The semiconductor die further includes an interconnect formed from a second MOL metal layer, wherein the interconnect is electrically coupled to the first and second gate contacts, and at least a portion of the interconnect is underneath the power rail.
Abstract:
A method and an apparatus for wireless communication are provided. The apparatus having a first latch having a first latch input and first latch output and a second latch having a second latch input, a second latch scan output, and a second latch data output. The second latch input is coupled to the first latch output. The apparatus further includes a selection component configured to select between a data input and a scan input based on a shift input. The selection component is coupled to the first latch input. The selection component includes a first NAND-gate, a second NAND-gate, and an OR-gate.
Abstract:
A low clock power data-gated flip-flop is provided. The data-gated flip-flop includes an exclusive OR component including a first exclusive OR input, a second exclusive OR input, and a first exclusive OR output. The first exclusive OR input is configured to receive a data input to the data-gated flip-flop. The data-gated flip-flop includes a first latch including a first latch data input and a first latch reset input, the first exclusive OR output being coupled to the first latch data input and the first latch reset input. The data-gated flip-flop includes a second latch having a data output, the data output coupled to the second exclusive OR input.
Abstract:
Techniques for fixing hold violations using metal-programmable cells are described herein. In one embodiment, a system comprises a first flip-flop, a second flip-flop, and a data path between the first and second flip-flops. The system further comprises a metal-programmable cell connected to the data path, wherein the metal-programmable cell is programmed to implement at least one capacitor to add a capacitive load to the data path. The capacitive load adds delay to the data path that prevents a hold violation at one of the first and second flip-flops.
Abstract:
Techniques for fixing hold violations using metal-programmable cells are described herein. In one embodiment, a system comprises a first flip-flop, a second flip-flop, and a data path between the first and second flip-flops. The system further comprises a metal-programmable cell connected to the data path, wherein the metal-programmable cell is programmed to implement at least one capacitor to add a capacitive load to the data path. The capacitive load adds delay to the data path that prevents a hold violation at one of the first and second flip-flops.