摘要:
A receiver has a first equalizer circuit that includes a first stage having a source degeneration circuit and a trans-impedance amplifier (TIA). The source degeneration circuit includes a resistor coupled in parallel with a capacitor. The TIA includes an embedded variable gain amplifier with a gain controlled by feedback resistors. Each feedback resistor is coupled between input and output of the TIA. In some implementations, the receiving circuit has a second equalizer circuit coupled in series with the first equalizer circuit. The second equalizer circuit includes a first stage having a source degeneration circuit and a TIA. The source degeneration circuit in the second equalizer circuit has a source degeneration resistor coupled in parallel with a source degeneration capacitor and the TIA includes an embedded variable gain amplifier whose gain is controlled by feedback resistors coupled between input and output of the TIA in the second equalizer circuit.
摘要:
In certain aspects, an apparatus includes a multiplexer having a first input, a second input, a select input, and an output, wherein the first input is configured to receive a first reference clock signal, the second input is configured to receive a second reference clock signal, and the select input is configured to receive a select signal. The multiplexer is configured to select one of the first and second reference clock signals based on the select signal, and output the selected one of the first and second reference clock signals at the output of the multiplexer. The apparatus also includes a clock driver having an input and an output, wherein the input of the clock driver is coupled to the output of the multiplexer.
摘要:
An apparatus and methods are disclosed for a bidirectional front-end circuit included within a system on chip (SoC). The bidirectional front-end circuit includes a differential bidirectional terminal for receiving and transmitting signals. The bidirectional front-end circuit is configured to provide a first communication path between a first controller and a connector through the differential bidirectional terminal when operating in a first mode. And, the bidirectional front-end circuit is reconfigured to provide a second communication path between a second controller and the connector through the differential bidirectional terminal when operating in a second mode.
摘要:
Power saving systems and methods for Universal Serial Bus (USB) systems are disclosed. When a USB physical layer (PHY) enters a U3 low power state, not only are normal elements powered down, but also circuitry within the USB PHY associated with detection of a low frequency periodic signal (LFPS) wake up signal is powered down. A low speed reference clock signal is still received by the USB PHY, and a medium speed clock within the USB PHY is activated once per period of the low speed reference clock signal. The medium speed clock activates the signal detection circuitry and samples a line for the LFPS. If no LFPS is detected, the signal detection circuitry and the medium speed clock return to low power until the next period of the low speed reference clock signal. If the LFPS is detected, the USB PHY returns to a U0 active power state.
摘要:
A driver circuit for transmitting serial data on a communication link combines voltage-mode and current-mode drivers. The driver circuit uses a voltage-mode driver as the main output driver. One or more auxiliary current-mode drivers are connected in parallel with the voltage-mode driver to adjust the output signal by injecting currents into the outputs. The voltage-mode driver supplies most of the output drive. Thus, the output driver circuit can provide the power efficiency benefits associated with voltage-mode drivers. The current-mode drivers can provide, for example, pre-emphasis, level adjustment, skew compensation, and other modifications of the output signals. Thus, the driver circuit can also provide the signal adjustment abilities associated with current-mode drivers.
摘要:
An equalizing circuit includes a first current summer that receives a data signal and a first plurality of feedback signals, a first multiplexer that selects a first sampling clock signal from a plurality of clock signals using a signal that indicates a mode of operation of the equalizing circuit, and a first slicer that samples the output of the first current summer in accordance with timing provided by the first sampling clock signal. The equalizing circuit can have a second current summer that receives the data signal and a second plurality of feedback signals, a second multiplexer that selects a second sampling clock signal from the plurality of clock signals using the signal that indicates the mode of operation of the equalizing circuit, and a second slicer that samples the output of the second current summer according to timing provided by the second sampling clock signal.
摘要:
A receiver including a first differential sense amplifier configured to amplify an input differential data signal to generate an output differential data signal; a first set of one or more differential decision feedback equalizer (DFE) taps configured to modify the output differential data signal based on a set of one or more differential tap signals, wherein the first set of one or more differential DFE taps affect an output common mode voltage associated with the output differential data signal; and a compensation circuit configured to adjusts the output common mode voltage to compensate for the effect on the output common mode voltage by the set of one or more differential DFE taps. The compensation circuit includes reference and replica receivers to generate reference and replica output common mode voltages, and a feedback circuit to adjust the output common mode voltage based on the reference and replica output common mode voltages.
摘要:
Systems and methods for adjusting a phase step size of a clock data recover (CDR) circuit are described according to aspects of the present disclosure. In certain aspects, a method for adjusting a phase step size of a CDR circuit includes sensing a frequency offset of the CDR circuit, and adjusting the phase step size of the CDR circuit based on the sensed frequency offset. The frequency offset may be sensed by sensing a signal level on an integration path of a loop filter of the CDR circuit. The phase step size of the CDR circuit may be adjusted by switching the CDR circuit between a first phase step size and a second phase step size using a modulator (e.g., a sigma-delta modulator).
摘要:
Power saving systems and methods for Universal Serial Bus (USB) systems are disclosed. When a USB physical layer (PHY) enters a U3 low power state, not only are normal elements powered down, but also circuitry within the USB PHY associated with detection of a low frequency periodic signal (LFPS) wake up signal is powered down. A low speed reference clock signal is still received by the USB PHY, and a medium speed clock within the USB PHY is activated once per period of the low speed reference clock signal. The medium speed clock activates the signal detection circuitry and samples a line for the LFPS. If no LFPS is detected, the signal detection circuitry and the medium speed clock return to low power until the next period of the low speed reference clock signal. If the LFPS is detected, the USB PHY returns to a U0 active power state.
摘要:
A phase interpolator, including: a first portion including a first plurality of branches and a plurality of tail current sources, each branch including a differential pair of transistors, source terminals of the differential pair of transistors connect to form a source node, wherein each tail current source couples to one of the source nodes, and wherein the differential pair of transistors and the corresponding tail current source are configured in a current coding scheme; a second portion including a second plurality of branches and a fixed current source coupled to the second plurality of branches, each branch of the second plurality of branches including a second plurality of differential pairs of transistors and a plurality of switches configured in a size coding scheme; wherein the first portion and the second portion are coupled to each other and to a pair of load resistors.