Abstract:
A method of regulating temperature of an accumulator battery in a course of charging or discharging. The method includes: a) acquiring a state of charge relating to a level of charge of the accumulator battery, b) measuring values of the temperature of the accumulator battery at a first state of charge and at a second state of charge which is different, c) estimating, as a function of the values of the temperature measured in b), the value of the temperature of the accumulator battery at a future third state of charge, and d) controlling the temperature of the accumulator battery as a function of the value of the temperature estimated in c).
Abstract:
A method manages a power train of a motor vehicle including a heat engine and an electric motor electrically linked to a power battery. The method includes controlling a heating system for heating the power battery according to at least one measurement of a temperature representative of an operation of the heat engine.
Abstract:
A battery module including: a storage case, at least one storage battery cell housed inside the storage case, at least one Peltier cell with a first face in direct or indirect contact, via a heat conduction member, with the storage battery cell and a second face in direct or indirect contact, via a heat conduction member, with an outside of the storage case, and a unit controlling the Peltier cell. The Peltier cell and the control unit are supplied with current by the storage battery cell.
Abstract:
A method is for protecting an electrical architecture including a protective device provided with a protective fuse capable of melting in a deteriorated mode of operation during which a breaking current having an amperage greater than a threshold is flowing through the architecture. The method includes, in a nominal mode of operation, periodically estimating a temperature of the fuse and controlling an amperage of a useful current flowing through the fuse such that the estimated temperature remains below a melting temperature of the fuse.
Abstract:
A method for assessing a quantity of energy that can be extracted from a motor vehicle battery including: receiving an initial temperature value and an initial battery charge status value, corresponding to an initial point in time; estimating at least one subsequent temperature value on the basis of the initial temperature value received and the initial charge status value received; determining an estimated value of the quantity of energy that can be extracted from the battery on the basis of the at least one subsequent temperature value and the initial battery charge status value.
Abstract:
A module of elementary electrical energy storage cells includes a first set of elementary cells that are interconnected so as to supply a first voltage in a first voltage range and a second set of elementary cells that are interconnected so as to supply a second voltage in a second voltage range. At least one elementary cell from the second set is arranged between two elementary cells from the first set.
Abstract:
A method for managing a battery located in a motor vehicle includes cooling the battery when a data item indicative of the temperature of the battery exceeds a first threshold, stopping the cooling of the battery when the data item indicative of the temperature of the battery drops below a second threshold, notably lower than the first threshold, and adjusting at least one of the first and second thresholds.
Abstract:
A method for managing the temperature of a battery of an electric or hybrid vehicle includes recording a temperature value at which the cooling or heating of the battery is triggered. The method further includes, for two consecutive values in a predefined sequence of states of charge: a step of comparing a real gradient to a reference gradient of the battery temperature; and a step of modifying, depending on the comparison, the value of the trigger temperature, or the value of the power output by cooling or heating the battery; and also includes applying the modified trigger temperature or output power for the following two consecutive values of the state of charge of the battery in the predefined sequence.