摘要:
A method for making a catalyst is provided that features loading a catalytic metal to a support using at least two different precursor compounds of that said metal; and loading the promoter to the support in an amount effective so as to achieve similar promotion as for a comparable catalyst comprising a greater amount of the promoter using only one precursor compound, where the catalytic metal is selected from among Group 8 metals, 9 metal, Group 10 metals, and combinations thereof. The promoter is preferably boron, silver, a noble metal, or combination thereof. Also provided are catalysts made by the method and Fischer-Tropsch processes that include contacting synthesis gas with a catalyst made by the method.
摘要:
This invention relates to catalysts comprising a catalytic metal deposited on a composite support with well-dispersed chemical “anchor” species acting as nucleation centers for catalytic metal crystallites growth. The catalysts have the advantage that the average catalytic metal crystallite size can be controlled by the molar ratio of catalytic metal to chemical “anchor,” and is not limited by the porous structure of the support. A preferred embodiment comprises a cobalt-based catalyst on a silica-alumina support made by a co-gel method, wherein its average pore size can be controlled by the pH. The alumina species in the support most likely serve as chemical “anchors” to control the dispersion of cobalt species, such that the average cobalt crystallite size can be greater than the average pore size.
摘要:
An effective catalyst includes an amorphous silica-alumina support having a bimodal pore size-distribution. The support may be prepared by a method that includes the physical mixing of two silica-alumina gels prepared so as to have two different average pore sizes. The catalyst has the advantage that both metal dispersion on the support and product diffusion in the pores are optimized. Further, the catalyst has improved performance in the production of hydrocarbons from synthesis gas.
摘要:
The invention generally relates to methods for modifying a porous amorphous material comprising micropores to reduce its micropore volume and to form a support for a hydroprocessing catalyst, to methods of making said catalyst, as well as to methods for hydrocracking employing said hydroprocessing catalyst characterized by a lower selectivity towards undesirable gaseous hydrocarbon products. In one embodiment, the method for modifying the amorphous material comprises depositing an inorganic oxide or inorganic oxide precursor to the amorphous material; and treating the deposited amorphous material so as to reduce its micropore volume by at least about 5 percent, while its mean pore diameter is substantially unchanged or changed by not more than about 10 percent. Further embodiments include the amorphous material comprising silica-alumina, and the deposited inorganic oxide or inorganic oxide precursor comprising silicon.
摘要:
A stabilized catalyst support having improved hydrothermal stability, catalyst made therefrom, and method for producing hydrocarbons from synthesis gas using said catalyst. The stabilized support is made by a method comprising treating a crystalline hydrous alumina precursor in contact with at least one structural stabilizer or compound thereof. The crystalline hydrous alumina precursor preferably includes an average crystallite size selected from an optimum range delimited by desired hydrothermal resistance and desired porosity. The crystalline hydrous alumina precursor preferably includes an alumina hydroxide, such as crystalline boehmite, crystalline bayerite, or a plurality thereof differing in average crystallite sizes by at least about 1 nm. The crystalline hydrous alumina precursor may be shaped before or after contact with the structural stabilizer or compound thereof. The treating includes calcining at 450° C. or more. Preferred structural stabilizers can include cobalt, magnesium, manganese, manganese, zirconium, boron, aluminum, barium, silicon, lanthanum, oxides thereof, or combinations thereof.
摘要:
A stabilized catalyst support having improved hydrothermal stability, catalyst made therefrom, and method for producing hydrocarbons from synthesis gas using said catalyst. The stabilized support is made by a method comprising treating a crystalline hydrous alumina precursor in contact with at least one structural stabilizer or compound thereof. The crystalline hydrous alumina precursor preferably includes an average crystallite size selected from an optimum range delimited by desired hydrothermal resistance and desired porosity. The crystalline hydrous alumina precursor preferably includes an alumina hydroxide, such as crystalline boehmite, crystalline bayerite, or a plurality thereof differing in average crystallite sizes by at least about 1 nm. The crystalline hydrous alumina precursor may be shaped before or after contact with the structural stabilizer or compound thereof. The treating includes calcining at 450° C. or more. Preferred structural stabilizers can include cobalt, magnesium, manganese, manganese, zirconium, boron, aluminum, barium, silicon, lanthanum, oxides thereof, or combinations thereof.
摘要:
A catalytic partial oxidation process for producing synthesis gas is disclosed which comprises passing a light hydrocarbon and oxygen mixture over a composite catalyst to produce a mixture of carbon monoxide and hydrogen. Preferred composite catalysts are prepared by mixing together discrete particles of catalytic metal and of promoter. The resulting catalyst resists deactivation due to reaction between the active metal and the promoter. A catalyst and method for making a catalyst and a method for making middle distillates from light hydrocarbons are also disclosed.
摘要:
An amorphous support, methods for making the same and methods of using, particularly in hydrocracking. A method of making may comprise mixing a first amorphous material and a second amorphous material of different acidities to form a mixture, and treating by either separately treating the first and second amorphous materials before mixing or treating the mixture, so as to form an amorphous catalyst support. Treating preferably includes calcining. The acidity of the amorphous support may be modified by the different acidities of the precursor amorphous materials, their proportions in the mixture, and/or the order of the mixing and treating steps. A method of use may comprise reacting a hydrocarbon fraction with hydrogen over a hydrocracking catalyst comprising the amorphous catalyst support to form a hydrocracked product. Further embodiments include the first and second amorphous materials comprising silica-alumina, and/or differing in Brönsted acidity, Lewis acidity, or acidity index.
摘要:
The present methods feature an overall decrease in transportation costs and catalyst preparation/protection measures. A catalyst comprising a catalytic metal in an oxide form is safely transported in an oxidizing environment to a synthesis site, without any special precautions being taken before and during transport. The catalyst is then reduced with a reducing gas at the synthesis plant. The reduced catalyst is mixed with a stripped hydrocarbon liquid to form a catalyst slurry, wherein the stripped hydrocarbon liquid is substantially free of dissolved oxygen after being contacted with a stripping gas. The mixing can take place in a pre-operational hydrocarbon synthesis reactor, or at least a portion of the slurry can be transferred to at least one synthesis reactor either during operation or at the reactor start-up. A lessening of costs is realized as a coating step to minimize oxidative degradation of the catalyst is not required.
摘要:
The present invention is generally related towards methods for preparing and using a more stable synthesis catalysts. In particular, the present invention is directed towards treating synthesis catalysts with low levels of oxygen to deactivate the smaller more unstable metal crystallites present in the catalyst matrix. The process can be carried out either prior to and/or simultaneously with the synthesis reaction.