摘要:
Processes for forming ceramic particulate material. The ceramic particulate material includes alumina particles, the particles having a specific surface area (SSA) not less than 15 m2/g and not greater than 75 m2/g and a sphericity quantified by at least one of (i) a mean roundness not less than 0.710 as measured by Roundness Correlation Image Analysis, and (ii) a concavity less than 20%, wherein concavity is the percent of alumina particles based on a sample of at least 100 particles, which have a concave outer peripheral portion that extends along a distance not less than 10% of d50 by TEM inspection, the concave outer peripheral portion having a negative radius of curvature as viewed from an interior of the particle.
摘要:
Ceramic particulate material includes alumina particles, the particles having a specific surface area (SSA) not less than 15 m2/g and not greater than 75 m2/g and a sphericity quantified by at least one of (i) a mean roundness not less than 0.710 as measured by Roundness Correlation Image Analysis, and (ii) a concavity less than 20%, wherein concavity is the percent of alumina particles based on a sample of at least 100 particles, which have a concave outer peripheral portion that extends along a distance not less than 10% of d50 by TEM inspection, the concave outer peripheral portion having a negative radius of curvature as viewed from an interior of the particle
摘要:
Processes for forming ceramic particulate material. The ceramic particulate material includes alumina particles, the particles having a specific surface area (SSA) not less than 15 m2/g and not greater than 75 m2/g and a sphericity quantified by at least one of (i) a mean roundness not less than 0.710 as measured by Roundness Correlation Image Analysis, and (ii) a concavity less than 20%, wherein concavity is the percent of alumina particles based on a sample of at least 100 particles, which have a concave outer peripheral portion that extends along a distance not less than 10% of d50 by TEM inspection, the concave outer peripheral portion having a negative radius of curvature as viewed from an interior of the particle.
摘要:
A polishing slurry includes liquid medium and particulate abrasive. The particulate abrasive includes soft abrasive particles, hard abrasive particles, and colloidal silica particles, wherein the soft abrasive particles have a Mohs hardness of not greater than 8 and the hard abrasive particles have a Mohs hardness of not less than 8, and wherein the soft abrasive particles and the hard abrasive particles are present at a weight ratio of not less than 2:1.
摘要:
A recrystallized silicon carbide body is provided that has a resistivity of not less than about 1E5 Ωcm and a nitrogen content comprising nitrogen atoms bonded within the body, wherein the nitrogen content is not greater than about 200 ppm.
摘要:
A method for treating a semiconductor processing component, including: exposing the component to a halogen gas at an elevated temperature, oxidizing the component to form an oxide layer, and removing the oxide layer.
摘要:
A method for cleaning a semiconductor processing component is provided. The process calls for directing a stream of cleaning media at a surface of the component, the cleaning media including zirconia. After cleaning with the cleaning media, frozen CO2 (dry ice) pellets may be directed at the surface to further clean the component.
摘要:
A recrystallized silicon carbide body is provided that has a resistivity of not less than about 1E5 Ω cm and a nitrogen content comprising nitrogen atoms bonded within the body, wherein the nitrogen content is not greater than about 200 ppm.
摘要:
A method of forming a component is disclosed. The method includes: providing a core containing a porous material; infiltrating the core with silicon carbide; and removing the porous material of the core, thereby forming a porous substrate containing silicon carbide.
摘要:
A method for cleaning ceramic workpieces such as SiC boats used in semiconductor fabrication is disclosed. The method comprises washing a virgin or used ceramic workpiece with a strong acid and then using a pelletized CO2 cleaning process on the acid-washed component. The inventive method has been found to produce a workpiece having a very low level of metallic and particulate contaminants on its surface.