Abstract:
A method and apparatus of forming a nonvolatile semiconductor device including forming a first gate insulating film on a main surface of a first semiconductor region, forming a first gate electrode on the first gate insulating film, forming a second gate insulating film, forming a second gate electrode over a first side surface of the first gate electrode, selectively removing the second gate insulating film, etching the second gate insulating film kept between the second gate electrode and a main surface of the first semiconductor region in order to form an etched charge storage layer, introducing first impurities in the first semiconductor region in a self-aligned manner to the second gate electrode in order to form a second semiconductor region, annealing the semiconductor substrate to extend the second semiconductor region to an area under the second gate electrode.
Abstract:
A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
Abstract:
Disclosed is a semiconductor device including a first MISFET of an n channel type and a second MISFET of a p channel type, each of the MISFETs being configured with a gate insulating film featuring a silicon oxide film or a silicon oxynitride film and a gate electrode including a conductive silicon film positioned on the gate insulating film. Metal elements such as Hf are introduced near the interface between the gate electrode and the gate insulating film in both the first and second MISFETs such that metal atoms with a surface density of 1×1013 to 5×1014 atoms/cm2 are contained near the interface and each of the first and second MISFETs having a channel region containing an impurity the concentration of which is equal to or lower than 1.2×1018/cm3.
Abstract:
In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p′-type polysilicon film with a high impurity concentration deposited thereon.
Abstract:
In a non-volatile memory, writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film, which serves as a charge accumulation layer. The gate electrode of a memory cell has a laminated structure made of a plurality of polysilicon films with different impurity concentrations. In a two-layered structure the gate electrode has a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon. Holes are injected into the charge accumulation layer from the gate electrode.
Abstract:
In a split gate MONOS memory which carries out rewrite by hot carrier injection, retention characteristics are improved. A select gate electrode of a memory cell is connected to a select gate line, and a memory gate electrode is connected to a memory gate line. A drain region is connected to a bit line, and a source region is connected to a source line. Furthermore, a well line is connected to a p type well region in which the memory cell is formed. When write to the memory cell is to be carried out, write by a source side injection method is carried out while applying a negative voltage to the p type well region via the well line.