摘要:
A variety of illumination devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, embodiments of the illumination devices feature one or more optical couplers that redirect illumination from the LEEs to a reflector which then directs the light into a range of angles. In some embodiments, the illumination device includes a second reflector that reflects at least some of the light from the first reflector. In certain embodiments, the illumination device includes a light guide that guides light from the collector to the first reflector. The components of the illumination device can be configured to provide illumination devices that can provide a variety of intensity distributions. Such illumination devices can be configured to provide light for particular lighting applications, including office lighting, task lighting, cabinet lighting, garage lighting, wall wash, stack lighting, and downlighting.
摘要:
A variety of illumination devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, embodiments of the illumination devices feature one or more optical couplers that redirect illumination from the LEEs to a reflector which then directs the light into a range of angles. In some embodiments, the illumination device includes a second reflector that reflects at least some of the light from the first reflector. In certain embodiments, the illumination device includes a light guide that guides light from the collector to the first reflector. The components of the illumination device can be configured to provide illumination devices that can provide a variety of intensity distributions. Such illumination devices can be configured to provide light for particular lighting applications, including office lighting, task lighting, cabinet lighting, garage lighting, wall wash, stack lighting, and downlighting.
摘要:
A variety of illumination devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, embodiments of the illumination devices feature one or more optical couplers that redirect illumination from the LEEs to a reflector which then directs the light into a range of angles. In some embodiments, the illumination device includes a second reflector that reflects at least some of the light from the first reflector. In certain embodiments, the illumination device includes a light guide that guides light from the collector to the first reflector. The components of the illumination device can be configured to provide illumination devices that can provide a variety of intensity distributions. Such illumination devices can be configured to provide light for particular lighting applications, including office lighting, task lighting, cabinet lighting, garage lighting, wall wash, stack lighting, and downlighting.
摘要:
A variety of illumination devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, embodiments of the illumination devices feature one or more optical couplers that redirect illumination from the LEEs to a reflector which then directs the light into a range of angles. In some embodiments, the illumination device includes a second reflector that reflects at least some of the light from the first reflector. In certain embodiments, the illumination device includes a light guide that guides light from the collector to the first reflector. The components of the illumination device can be configured to provide illumination devices that can provide a variety of intensity distributions. Such illumination devices can be configured to provide light for particular lighting applications, including office lighting, task lighting, cabinet lighting, garage lighting, wall wash, stack lighting, and downlighting.
摘要:
This is directed to a LED light fixture having a shaped light guide array with a CPC reflector for directing light off-axis, and methods for constructing the same. A LED light fixture includes a LED module providing light and an elongated light guide array placed adjacent to the LED module. The elongated light guide array can include a curved outer surface through which light is emitted into an environment. To further control the output of light, and to direct light off-axis, the light guide array can include a CPC reflector disposed around a boundary or periphery of the light guide array. The CPC reflector can be angled such that light is directed at angles above a cut-off angle by which the reflector is rotated about a focus.
摘要:
A variety of illumination devices are disclosed that are configured to manipulate light provided by one or more light-emitting elements (LEEs). In general, embodiments of the illumination devices feature one or more optical couplers that redirect illumination from the LEEs to a reflector which then directs the light into a range of angles. In some embodiments, the illumination device includes a second reflector that reflects at least some of the light from the first reflector. In certain embodiments, the illumination device includes a light guide that guides light from the collector to the first reflector. The components of the illumination device can be configured to provide illumination devices that can provide a variety of intensity distributions. Such illumination devices can be configured to provide light for particular lighting applications, including office lighting, task lighting, cabinet lighting, garage lighting, wall wash, stack lighting, and downlighting.
摘要:
This is directed to a LED light fixture having a shaped light guide array with a CPC reflector for directing light off-axis, and methods for constructing the same. A LED light fixture includes a LED module providing light and an elongated light guide array placed adjacent to the LED module. The elongated light guide array can include a curved outer surface through which light is emitted into an environment. To further control the output of light, and to direct light off-axis, the light guide array can include a CPC reflector disposed around a boundary or periphery of the light guide array. The CPC reflector can be angled such that light is directed at angles above a cut-off angle by which the reflector is rotated about a focus.
摘要:
Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
摘要:
A method for forming a luminescent layer on a light emitting semiconductor device includes positioning a stencil on a substrate such that a light emitting semiconductor device disposed on the substrate is located within an opening in the stencil, depositing a stenciling composition including luminescent material in the opening, removing the stencil from the substrate, and curing the stenciling composition to a solid state. The resulting light emitting device includes a stack of layers including semiconductor layers comprising an active region and a luminescent material containing layer having a substantially uniform thickness disposed around at least a portion of the stack. A surface of the luminescent material containing layer not adjacent to the stack substantially conforms to a shape of the stack. In one embodiment, the light emitting device emits white light in a uniformly white spatial profile.
摘要:
A method of bonding a transparent optical element to a light emitting device having a stack of layers including semiconductor layers comprising an active region is provided. The method includes elevating a temperature of the optical element and the stack and applying a pressure to press the optical element and the stack together. In one embodiment, the method also includes disposing a layer of a transparent bonding material between the stack and the optical element. The bonding method can be applied to a premade optical element or to a block of optical element material which is later formed or shaped into an optical element such as a lens or an optical concentrator.