摘要:
Exemplary embodiments of the present invention relate to a method for making multilayer flexible printed circuit carrier. The method comprises producing a first flexible conductor layer having a first width, producing a second flexible conductor layer having a second width larger than the first width, and separating a first side of the first flexible conductor and a first side of the second flexible conductors with a first insulator. The method also comprises placing a second insulator over at least a portion of a second surface of the first flexible conductor, and wrapping a portion of the second flexible conductor over the at least a portion of the second surface of the first flexible conductor.
摘要:
A device to access and/or verify connections between a chip package and a printed circuit board (“PCB”), specifically within packages lacking back-side measurement access, includes a housing for insertion between the chip package and PCB. A passageway in the housing connects an entrance and an exit from the housing. The entrance is disposed on an end of the housing facing away from the chip package. The exit is disposed on a side of the housing below the chip package such that the passageway is directed at a signal path between the chip package and the PCB. A conductor disposed in the passageway is movable between a retracted position in which a contact end of the conductor is disposed within the passageway of the housing and an extended position in which the contact end of the conductor is disposed outside of the housing and in contact with the signal path.
摘要:
Disclosed herein is a method comprising drilling a first hole in a multilayered device; the multilayered device comprising a fill layer disposed between and in intimate contact with two layers of a first electrically conducting material; the fill layer being electrically insulating; plating the first hole with a slurry; the slurry comprising a magnetic material, an electrically conducting material, or a combination comprising at least one of the foregoing materials; filling the first hole with a fill material; the fill material being electrically insulating; laminating a first layer and a second layer on opposing faces of the multilayered device to form a laminate; the opposing faces being the faces through which the first hole is drilled; the first layer and the second layer each comprising a second electrically conducting material; drilling a second hole through the laminate; the second hole having a circumference that is encompassed by a circumference of the first hole; and plating the surface of the second hole with a third electrically conducting material.
摘要:
A method includes forming patterned lines on a substrate having a predetermined pitch. The method further includes forming spacer sidewalls on sidewalls of the patterned lines. The method further includes forming material in a space between the spacer sidewalls of adjacent patterned lines. The method further includes forming another patterned line from the material by protecting the material in the space between the spacer sidewalls of adjacent patterned lines while removing the spacer sidewalls. The method further includes transferring a pattern of the patterned lines and the another patterned line to the substrate.
摘要:
A semiconductor fin having a doping of the first conductivity type and a semiconductor column are formed on a substrate. The semiconductor column and an adjoined end portion of the semiconductor fin are doped with dopants of a second conductivity type, which is the opposite of the first conductivity type. The doped semiconductor column constitutes an inner electrode of a capacitor. A dielectric layer and a conductive material layer are formed on the semiconductor fin and the semiconductor column. The conductive material layer is patterned to form an outer electrode for the capacitor and a gate electrode. A single-sided halo implantation may be performed. Source and drain regions are formed in the semiconductor fin to form an access transistor. The source region is electrically connected to the inner electrode of the capacitor. The access transistor and the capacitor collectively constitute a DRAM cell.
摘要:
A method forms an anti-fuse structure comprises a plurality of parallel conductive fins positioned on a substrate, each of the fins has a first end and a second end. A second electrical conductor is electrically connected to the second end of the fins. An insulator covers the first end of the fins and a first electrical conductor is positioned on the insulator. The first electrical conductor is electrically insulated from the first end of the fins by the insulator. The insulator is formed to a thickness sufficient to break down on the application of a predetermined voltage between the second electrical conductor and the first electrical conductor and thereby form an uninterrupted electrical connection between the second electrical conductor and the first electrical conductor through the fins.
摘要:
Embodiments of the invention relate generally to semiconductor devices and, more particularly, to semiconductor devices having field effect transistors (FETs) with a low body resistance and, in some embodiments, a self-balanced body potential where multiple transistors share same body potential. In one embodiment, the invention includes a field effect transistor (FET) comprising a source within a substrate, a drain within the substrate, and an active gate atop the substrate and between the source and the drain, an inactive gate structure atop the substrate and adjacent the source or the drain, a body adjacent the inactive gate, and a discharge path within the substrate for releasing a charge from the FET, the discharge path lying between the active gate of the FET and the body, wherein the discharge path is substantially perpendicular to a width of the active gate.
摘要:
A method is provided for making a resistive polycrystalline semiconductor device, e.g., a poly resistor of a microelectronic element such as a semiconductor integrated circuit. The method can include: (a) forming a layered stack including a dielectric layer contacting a surface of a monocrystalline semiconductor region of a substrate, a metal gate layer overlying the dielectric layer, a first polycrystalline semiconductor region adjacent the metal gate layer having a predominant dopant type of either n or p, and a second polycrystalline semiconductor region spaced from the metal gate layer by the first polycrystalline semiconductor region and adjoining the first polycrystalline semiconductor region; and (b) forming first and second contacts in conductive communication with the second polycrystalline semiconductor region, the first and second contacts being spaced apart so as to achieve a desired resistance. In a variation thereof, an electrical fuse is formed which includes a continuous silicide region through which a current can be passed to blow the fuse. Some of the steps of fabricating the poly resistor or the electrical fuse can be employed simultaneously in fabricating metal gate field effect transistors (FETs) on the same substrate.
摘要:
A semiconductor structure and a method of forming the same are provided in which the gate induced drain leakage is controlled by introducing a workfunction tuning species within selected portions of a pFET such that the gate/SD (source/drain) overlap area of the pFET is tailored towards flatband, yet not affecting the workfunction at the device channel region. The structure includes a semiconductor substrate having at least one patterned gate stack located within a pFET device region of the semiconductor substrate. The structure further includes extension regions located within the semiconductor substrate at a footprint of the at least one patterned gate stack. A channel region is also present and is located within the semiconductor substrate beneath the at least one patterned gate stack. The structure further includes a localized workfunction tuning area located within a portion of at least one of the extension regions that is positioned adjacent the channel region as well as within at least a sidewall portion of the at least one gate stack. The localized workfunction tuning area can be formed by ion implantation or annealing.
摘要:
An electrical antifuse comprising a field effect transistor includes a gate dielectric having two gate dielectric portions. Upon application of electric field across the gate dielectric, the magnitude of the electrical field is locally enhanced at the boundary between the thick and thin gate dielectric portions due to the geometry, thereby allowing programming of the electrical antifuse at a lower supply voltage between the two electrodes, i.e., the body and the gate electrode of the transistor, across the gate dielectric.