摘要:
A method and structure for implementing a reprogrammable read only memory (ROM), and a design structure on which the subject circuit resides are provided. A pair of fuse elements having different lengths are selectively arranged to define an initial bit state. A group of a plurality of the pairs of fuse elements defines a predetermined data pattern of ones and zeros, providing initial states stored in the reprogrammable ROM. The reprogrammable ROM is reprogrammed when needed by selectively blowing a selected fuse or selected fuses to change the data pattern stored in the ROM.
摘要:
A method and structure implementing a reprogrammable read only memory (ROM) include a pair of fuse elements having different lengths and selectively arranged to define an initial bit state. A group of a plurality of the pairs of fuse elements defines a predetermined data pattern of ones and zeros, providing initial states stored in the reprogrammable ROM. The reprogrammable ROM is reprogrammed when needed by selectively blowing a selected fuse or selected fuses to change the data pattern stored in the ROM.
摘要:
Each of a hot-carrier non-volatile memory device and a method for fabricating the hot carrier non-volatile memory device is predicated upon a semiconductor structure and related method that includes a metal oxide semiconductor field effect transistor structure. The semiconductor structure and related method include at least one of: (1) a spacer that comprises a dielectric material having a dielectric constant greater than 7 (for enhanced hot carrier derived charge capture and retention); and (2) a drain region that comprises a semiconductor material that has a narrower bandgap than a bandgap of a semiconductor material from which is comprised a channel region (for enhanced impact ionization and charged carrier generation).
摘要:
Each of a hot-carrier non-volatile memory device and a method for fabricating the hot carrier non-volatile memory device is predicated upon a semiconductor structure and related method that includes a metal oxide semiconductor field effect transistor structure. The semiconductor structure and related method include at least one of: (1) a spacer that comprises a dielectric material having a dielectric constant greater than 7 (for enhanced hot carrier derived charge capture and retention); and (2) a drain region that comprises a semiconductor material that has a narrower bandgap than a bandgap of a semiconductor material from which is comprised a channel region (for enhanced impact ionization and charged carrier generation).
摘要:
A TSV structure, method of making the TSV structure and methods of testing the TSV structure. The structure including: a trench extending from a top surface of a semiconductor substrate to a bottom surface of the semiconductor substrate, the trench surrounding a core region of the semiconductor substrate; a dielectric liner on all sidewalls of the trench; and an electrical conductor filling all remaining space in the trench, the dielectric liner electrically isolating the electrical conductor from the semiconductor substrate and from the core region.
摘要:
Methods and circuits for undiscoverable physical chip identification are disclosed. Embodiments of the present invention provide an intrinsic bit element that comprises two transistors. The two transistors form a pair in which one transistor has a wide variability in threshold voltage and the other transistor has a narrow variability in threshold voltage. The wide variability is achieved by making a transistor with a smaller width and length than the other transistor in the pair. The variation of the threshold voltage of the wide variability transistor means that in the case of copies of intrinsic bit elements being made, some of the “copied” wide variability transistors will have significantly different threshold voltages, causing some of the intrinsic bit elements of a copied chip to read differently than in the original chip from which they were copied.
摘要:
A method of fabricating a memory device is provided that may begin with forming a layered gate stack atop a semiconductor substrate and patterning a metal electrode layer stopping on the high-k gate dielectric layer of the layered gate stack to provide a first metal gate electrode and a second metal gate electrode on the semiconductor substrate. In a next process sequence, at least one spacer is formed on the first metal gate electrode atop a portion of the high-k gate dielectric layer, wherein a remaining portion of the high-k gate dielectric is exposed. The remaining portion of the high-k gate dielectric layer is etched to provide a first high-k gate dielectric having a portion that extends beyond a sidewall of the first metal gate electrode and a second high-k gate dielectric having an edge that is aligned to a sidewall of the second metal gate electrode.
摘要:
An electrically programmable fuse that includes an anode contact region and a cathode contact region are formed of a polysilicon layer having a silicide layer formed thereon, and a fuse link conductively connecting the cathode contact region with the anode contact region, which is programmable by applying a programming current, and a plurality of anisometric contacts formed on the silicide layer of the cathode contact region or on both the silicide layer of the cathode contact region and the anode contact region in a predetermined configuration, respectively.
摘要:
An antifuse is provided having a unitary monocrystalline semiconductor body including first and second semiconductor regions each having the same first conductivity type, and a third semiconductor region between the first and second semiconductor regions which has a second conductivity type opposite from the first conductivity type. An anode and a cathode can be electrically connected with the first semiconductor region. A conductive region including a metal, a conductive compound of a metal or an alloy of a metal can contact the first semiconductor region and extend between the cathode and the anode. The antifuse can further include a contact electrically connected with the second semiconductor region. In this way, the antifuse can be configured such that the application of a programming voltage between the anode and the cathode heats the first semiconductor region sufficiently to reach a temperature which drives a dopant outwardly therefrom, causing an edge of the first semiconductor region to move closer to an adjacent edge of the second semiconductor region, thus permanently reducing electrical resistance between the first and second semiconductor regions by one or more orders of magnitude.
摘要:
An eFuse, includes: a substrate and an insulating layer disposed on the substrate; a first layer including a single crystal or polycrystalline silicon disposed on the insulating layer; a second layer including a single crystal or polycrystalline silicon germanium disposed on the first layer, and a third layer including a silicide disposed on the second layer. The Ge has a final concentration in a range of approximately five percent to approximately twenty-five percent.