摘要:
Techniques are provided for detecting stroke within a patient using an implantable medical device. In one example, various electrocardiac and physiological signals are sensed within the patient by the implantable device. The device derives a set of indices from the sensed signals based on parameters affected by stroke. Stroke is then detected within the patient based on an examination of the set of indices. Warnings can then be generated, neurostimulation delivered, pacing therapy adjusted, medications dispensed, etc., in response to the stroke. In one particular example, the set of indices includes: a heart rate variability index; a heart rate turbulence index; a baroreflex index; a QT index; a respiration index; and a circadian variability index, from which a composite stroke index is derived. Time delta indices may also be generated for each individual index, which are exploited in generating the composite stroke index.
摘要:
Techniques are provided for detecting and distinguishing stroke and cardiac ischemia based on electrocardiac signals. In one example, the device senses atrial and ventricular signals within the patient along a set of unipolar sensing vectors and identifies certain morphological features within the signals such as PR intervals, ST intervals, QT intervals, T-waves, etc. The device detects changes, if any, within the morphological features such as significant shifts in ST interval elevation or an inversion in T-wave shape, which are indicative of stroke or cardiac ischemia. By selectively comparing changes detected along different unipolar sensing vectors, the device distinguishes or discriminates stroke from cardiac ischemia within the patient. The discrimination may be corroborated using various physiological and hemodynamic parameters. In some examples, the device further identifies the location of the ischemia within the heart. In still other examples, the device detects cardiac ischemia occurring during stroke.
摘要:
Specific embodiments provided herein relate to diagnosing, with improved specificity, occurrences of episodes relating to disorders that are known to affect T-wave morphology. One or more propensity metric is obtained, each of which is indicative of a patient's propensity for a specific disorder that is known to affect T-wave morphology. T-wave variability is monitored. Additionally, there is monitoring for a specific change in T-wave morphology that is known to be indicative of episodes relating to a disorder. When the specific change in T-wave morphology is detected, a diagnosis is determined for detecting the specific change in T-wave morphology, taking into account the propensity metric(s) and the T-wave variability.
摘要:
A method for diagnosing an electrolyte level with a cardiac rhythm management device includes recording intra-cardiac electrograms from multiple sites. The method determines the electrolyte level based upon a comparative analysis of intra-cardiac electrograms recorded from at least two of the sites. The electrolyte level can be quantified based upon a general model, or a patient specific model.
摘要:
A glycemic condition is indicated based on variance of a feature derived from cardiac electrogram data. Neurostimulation is then used to counteract a cardiac-related autonomic response to the glycemic condition. For example, stimulation of parasympathetic innervation may be used to counteract an autonomic sympathetic response that is associated with hypoglycemia or hyperglycemia. In addition, stimulation of sympathetic innervation may be used to counteract an autonomic parasympathetic response that is associated with hypoglycemia or hyperglycemia.
摘要:
Techniques are provided for detecting abnormal respiration within a patient based upon intracardiac electrogram (IEGM) signals or other electrical cardiac signals. Briefly, abnormal respiration is detected using a pattern recognition trained to discriminate normal and abnormal respiration based on morphological parameters and interval-based parameters extracted from the IEGM signals. In addition, techniques are described for distinguishing among different cardiac rhythm types within the patient while using one or more pattern classifiers or other pattern recognition devices.
摘要:
Techniques are provided for use with an implantable medical device such as a pacemaker or implantable cardioverter/defibrillator (ICD) for predicting and detecting hypoglycemia. In one example, the device tracks changes in a paced depolarization integral (PDI). A significant increase in PDI over a relatively short period of time indicates the onset of hypoglycemia (this can also be confirmed with QT changes). Upon detection of hypoglycemia, appropriate warning signals are generated to alert the patient. Certain therapies automatically provided by the implantable device may also be controlled in response to hypoglycemia. For example, if the patient is an insulin-dependent diabetic and the implantable device is equipped with an insulin pump capable of delivering insulin directly into the bloodstream, insulin delivery is automatically suspended until blood glucose levels return to acceptable levels. If the device is an ICD, it may be controlled to begin charging defibrillation capacitors upon detection of hypoglycemia so as to permit prompt delivery of a defibrillation shock, which may be needed if hypoglycemia triggers ventricular fibrillation. The detection techniques may be used in conjunction with other hypoglycemia detection techniques to improve detection specificity.
摘要:
Techniques are provided for controlling neurostimulation such as spinal cord stimulation (SCS) using a cardiac rhythm management device (CRMD). In various examples described herein, neurostimulation is delivered to a patient while regional cardiac performance of the heart of the patient is assessed by the CRMD. The delivery of further neurostimulation is adjusted or controlled based, at least in part, on the regional cardiac performance, preferably to enhance positive effects on the heart due to the neurostimulation or to mitigate any negative effects. Regional cardiac performance is assessed based on parameters derived from cardiogenic impedance signals detected along various vectors through the heart.
摘要:
A two-dimensional refractory period is defined in conjunction with the detection of cardiac events. Detection parameters associated with the two-dimensional refractory period may define a period of time during which a sensed cardiac signal is blanked or may define a period of time during which a given sensing threshold applies. The two-dimensional refractory period may be employed in atrial sensing to selectively blank far-field T-waves while enabling P-wave detection. The two-dimensional refractory period may be employed in ventricular sensing to selectively blank near-field T-waves while enabling detection of the QRS complex. The detection parameters associated with the two-dimensional refractory period may be adapted based on characteristics of previously detected cardiac signals.
摘要:
Techniques are described for detecting ischemia, hypoglycemia or hyperglycemia based on intracardiac electrogram (IEGM) signals. Ischemia is detected based on a shortening of the interval between the QRS complex and the end of a T-wave (QTmax), alone or in combination with a change in ST segment elevation. Alternatively, ischemia is detected based on a change in ST segment elevation combined with minimal change in the interval between the QRS complex and the end of the T-wave (QTend). Hypoglycemia is detected based on a change in ST segment elevation along with a lengthening of either QTmax or QTend. Hyperglycemia is detected based on a change in ST segment elevation along with minimal change in QTmax and in QTend. By exploiting QTmax and QTend in combination with ST segment elevation, changes in ST segment elevation caused by hypo/hyperglycemia can be properly distinguished from changes caused by ischemia.